DOI QR코드

DOI QR Code

Corrosion Behavior of Super Duplex Stainless Steel (STS 329J4L) Tubes and Fin-Tubes Used in Thermal Power Plant Applications

화력발전소용 슈퍼 듀플렉스 스테인리스 강(STS 329J4L) 조관 튜브 및 핀-튜브재의 부식거동

  • Jin Sung Park (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Yong Hyeon Kim (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Seung Gab Hong (POSCO Technical Research Laboratories) ;
  • Sung Jin Kim (Department of Advanced Materials Science and Engineering, Sunchon National University)
  • 박진성 (순천대학교 신소재공학과 ) ;
  • 김용현 (순천대학교 신소재공학과 ) ;
  • 홍승갑 (포스코 기술연구원) ;
  • 김성진 (순천대학교 신소재공학과 )
  • Received : 2023.11.28
  • Accepted : 2023.12.08
  • Published : 2023.12.29

Abstract

Corrosion behaviors of laser-welded super duplex stainless steel (SDSS) tubes after exposure to an actual power plant environment for one year and those of fin-tube welded SDSS were evaluated. Results showed that corrosion damage on the back side of the SDSS tube in the direction of hot air was higher than that on the front side regardless of weldment location. However, corrosion damage showed no difference between weldment and base metal due to recovery of phase fraction in the weldment through post weld heat treatment (PWHT). Nevertheless, the SDSS tube showed severe corrosion damage along grain boundary due to surface phase transformation (δ → γ) and Cr2N precipitation caused by PWHT with a high N2 atmosphere. Corrosion resistance of the SDSS tube was recovered when degraded surface was removed. Corrosion sensitivity of a fin-tube increased significantly due to pre-existing crevice, unbalanced phase fraction, and σ phase precipitation adjacent to the fusion line. Although corrosion resistance was improved by recovered phase fraction and sufficient dissolution of σ phase during PWHT, corrosion reaction was concentrated at the pre-existing crevice. These results suggest that welding conditions for fin-tube steel should be optimized to improve corrosion resistance by removing pre-existing crevice in the weldment.

Keywords

Acknowledgement

This paper was supported by Sunchon National University Research Fund in 2023. (Grant number: 2023-0274).

References

  1. J. O. Nilsson, Super duplex stainless steel, Materials Science and Technology, 8, 685 (1992). Doi: https://doi.org/10.1179/mst.1992.8.8.685 
  2. W. Min, L. Guoping, W. Lixin, H. Lifeng, and W. Yinghui, Temperature dependence of precipitation mechanism of intragranular χ phase in super duplex stainless steel S32750, Materials Letters, 287, 129304 (2021). Doi: https://doi.org/10.1016/j.matlet.2021.129304 
  3. C. Li and L. Jiang, Effect of flue gas desulfurization gypsum addition on critical chloride content for rebar corrosion in fly ash concrete, Construction and Building Materials, 286, 122963 (2021). Doi: https://doi.org/10.1016/j.conbuildmat.2021.122963 
  4. L. Qi, K. Liu, R. Wang, J. Li, Y. Zhang, and L. Chen, Removal of chlorine ions from desulfurization wastewater by modified fly ash hydrotalcite, ACS Omega, 5, 31485 (2020). Doi: https://doi.org/10.1021/acsomega.0c04074 
  5. R. A. Perren, T. A. Suter, P. J. Uggowitzer, L. Weber, R. Magdowski, H. Bohni, and M. O. Speidel, Corrosion resistance of super duplex stainless steels in chloride ion containing environments: investigations by means of a new microelectrochemical method I. Precipitation-free states, Corrosion Science, 43, 707 (2001). Doi: https://doi.org/10.1016/S0010-938X(00)00087-1 
  6. C. -O. A. Olsson and D. Landolt, Passive films on stainless steels-chemistry, structure and growth, Electrochimica Acta, 48, 1093 (2003). Doi: https://doi.org/10.1016/S0013-4686(02)00841-1 
  7. A. R. Kannan, N. S. Shanmugam, V. Rajkumar, and M. Vishnukumar, Insight into the microstructural features and corrosion properties of wire arc additive manufactured super duplex stainless steel (ER2594), Materials Letters, 270, 127680 (2020). Doi: https://doi.org/10.1016/j.matlet.2020.127680 
  8. D. M. Cho, J. S. Park, S. G. Hong, and S. J. Kim, Corrosion behaviors according to the welding process of super-duplex stainless steel welded tubes: Gas tungsten arc welding vs. laser beam welding, Corrosion Science, 216, 111108 (2023). Doi: https://doi.org/10.1016/j.corsci.2023.111108 
  9. J. H. Lee, J. S. Park, D. M. Cho, S. G. Hong, and S. J. Kim, Effects of post weld heat treatment conditions on localized corrosion resistance of super duplex stainless steel tube used for thermal power plant applications, Journal Korean Institute of Surface Engineering, 54, 248 (2021). Doi: https://doi.org/10.5695/JKISE.2021.54.5.248 
  10. M. Sangsuriyun, P. Surin, and K. Eidhed, Optimization of high-frequency resistance welding process using mechanical property of finned tube SA-192 steel, Journal of Engineering and Applied Sciences, 15, 607 (2020). Doi: https://www.arpnjournals.org/jeas/research_papers/rp_2020/jeas_0320_8137.pdf 
  11. R. Kocurek and J. Adamiec, Manufacturing technologies of finned tubes, Advances in Materials Science, 13, 26 (2013). Doi: https://doi.org/10.2478/adms-2013-0009 
  12. M. E. Williams, V. J. Gadgil, J. M. Krougman, and F. P. Ijsseling, The effect of σ-phase precipitation at 800℃ on the corrosion resistance in sea-water of a high alloyed duplex stainless steel, Corrosion Science, 36, 871 (1994). Doi: https://doi.org/10.1016/0010-938X(94)90176-7 
  13. M. Sadeghian, M. Shamanian, and A. Shafyei, Effect of heat input on microstructure and mechanical properties of dissimilar joints between super duplex stainless steel and high strength low alloy steel, Materials Design, 60, 678 (2014). Doi: https://doi.org/10.1016/j.matdes.2014.03.057 
  14. R. G. Barrows and J. B. Newkirk, A modified system for predicting σ formation, Metallurgical Materials Transaction, 3B, 2889 (1972). Doi: https://doi.org/10.1007/BF02652857 
  15. H. Wang, T. Fu, J. Wang, F. Zhang, K. Zhang, and X. Deng, Study on heat transfer performance of fin-and-tube heat exchanger with elliptical fins, Journal of Energy Storage, 56, 105956 (2022). Doi: https://doi.org/10.1016/j.est.2022.105956 
  16. R. Deeb, Numerical analysis of the effect of longitudinal and transverse pitch ratio on the flow and heat transfer of staggered drop-shaped tubes bundle, International Journal of Heat and Mass Transfer, 183, 122123 (2022). Doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.122123 
  17. D. M. Cho, J. S. Park, S. G. Hong, J. K. Hwang, S. J. Kim, Corrosion behaviors of laser-welded super duplex stainless steel(UNS 32506) tube with post-weld heat treatment conditions, Journal Korean Institute of Surface Engineering, 54, 102 (2021). Doi: https://doi.org/10.5695/JKISE.2021.54.3.102 
  18. ASTM G48-03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution, ASTM International (2003). 
  19. E. Akiyama, S. Li, T. Shinohara, Z. Zhang, and K. Tsuzaki, Hydrogen entry into Fe and high strength steels under simulated atmospheric corrosion, Electrochimica Acta, 56, 1799 (2011). Doi: https://doi.org/10.1016/j.electacta.2010.09.043 
  20. S. Ajito, E. Tada, A. Ooi, and A. Nishikata, Effect of iron rust on hydrogen uptake during steel corrosion under an aqueous NaCl droplet, ISIJ International, 61, 1186 (2021). Doi: https://doi.org/10.2355/isijinternational.ISIJINT-2020-528 
  21. T. Tsuru, Y. Huang, Md. R. Ali, and A. Nishikata, Hydrogen entry into steel during atmospheric corrosion process, Corrosion Science, 47, 2431 (2005). Doi: https://doi.org/10.1016/j.corsci.2004.10.006 
  22. R. Badji, M. Bouabdallah, B. Bacroix, C. Kahloun, B. Belkessa, and H. Maza, Phase transformation and mechanical behavior in annealed 2205 duplex stainless steel welds, Materials Characterization, 59, 447 (2008). Doi: https://doi.org/10.1016/j.matchar.2007.03.004 
  23. Y. Han, D. Zou, J. Chen, Y. Wu, J. Liu, and J. Tian, Investigation on hot deformation behavior of 00Cr23Ni4N duplex stainless steel under medium-high strain rates, Materials Characterization, 62, 198 (2011). Doi: https://doi.org/10.1016/j.matchar.2010.11.013 
  24. V. A. Hosseini, L. Karlsson, K. Hurtig, I. Choquet, D. Engelberg, M. J. Roy, and C. Kumara, A novel arc heat treatment technique for producing graded microstructures through controlled temperature gradients, Materials and Design, 121, 11 (2017). Doi: https://doi.org/10.1016/j.matdes.2017.02.042 
  25. A. Putz, V. A. Hosseini, E. M. Westin, and N. Enzinger, Microstructure investigation of duplex stainless steel welds using arc heat treatment technique, Welding in the world, 64, 1135 (2020). Doi: https://doi.org/10.1007/s40194-020-00906-2 
  26. J. S. Park, D. M. Cho, S. G. Hong, and S. J. Kim, Effects of reducing atmospheres of bright annealing on the surface and corrosion characteristics of super duplex stainless steel tubes, Surface & Coating Technology, 423, 127621 (2021). Doi: https://doi.org/10.1016/j.surfcoat.2021.127621 
  27. K. Ogawa, K. Yamada, and A. Seki, Modelling of nitride precipitation during isothermal heating after rapidly cooled from high temperature in duplex stainless steel, ISIJ International, 62, 1725 (2022). Doi: https://doi.org/10.2355/isijinternational.ISIJINT-2022-113 
  28. Y. Zhao, Y. Yang, M. Barati, and A. Mclean, Strategies for nitrogen control during the production of interstitial-free steel, Ironmaking & Steelmaking, 45, 485 (2018). Doi: https://doi.org/10.1080/03019233.2017.1288308 
  29. T. L. Christiansen, M. Villa, C. Tibollo, K. V. Dahl, and M. A. J. Somers, High temperature solution nitriding of stainless steel; current status and future trends, HTM Journal of Heat Treatment and Materials, 75, 69 (2020). Doi: https://doi.org/10.3139/105.110406 
  30. A. Barnoush, M. Zamanzade, H. Vehoff, Direct observation of hydrogen enhanced plasticity in super duplex stainless steel by means of in situ electrochemical methods, Scripta Materialia, 62, 242 (2010). Doi: https://doi.org/10.1016/j.scriptamat.2009.11.007 
  31. R. N. Gunn, Duplex stainless steels: microstructure, properties and applications, R. N. Gunn, p. 26, Abington publishing, Cambridge (1997). 
  32. V. A. Hosseini, L. Karlsson, C. Ornek, P. Reccagni, S. Wessman, and D. Engelberg, Microstructure and functionality of a uniquely graded super duplex stainless steel designed by a novel arc heat treatment method, Materials Characterization, 139, 390 (2018). Doi: https://doi.org/10.1016/j.matchar.2018.03.024 
  33. R. Marin, H. Combeau, J. Zollinger, M. Dehmas, B. Rouat, A. Lamontagne, D. Cardinaux, and L. Lhenry-Robert, Solidification path and phase transformation in super-austenitic stainless steel UNS S31254, IOP Conference Series: Materials Science and Engineering, 529, 012008 (2019). Doi: https://doi.org/10.1088/1757-899X/529/1/012008