DOI QR코드

DOI QR Code

Comparison Study of Polymer and Ti Sol-Gel Carbon Coating on Ti for PEMFC Bipolar Plates

고분자전해질 연료전지용 Ti 분리판을 위한 고분자와 Ti Sol-Gel 탄소코팅의 비교 연구

  • Won-Seog Yang (Mobility Parts Research Team, R&D Division of Hyundai-Steel) ;
  • Jae-Ho Lee (Mobility Parts Research Team, R&D Division of Hyundai-Steel) ;
  • Hee-Suk Roh (Mobility Parts Research Team, R&D Division of Hyundai-Steel) ;
  • Ju-Hyun Yoo (Mobility Parts Research Team, R&D Division of Hyundai-Steel) ;
  • Chul-Min Park (Organic Division, Color&Dispersion Unit, R&D Center of KCC) ;
  • Su-Yeon Lee (Surface & Nano Materials Division, KIMS) ;
  • Sung-Mo Moon (Surface & Nano Materials Division, KIMS)
  • 양원석 (현대제철 연구개발본부 모빌리티부품연구팀) ;
  • 이재호 (현대제철 연구개발본부 모빌리티부품연구팀) ;
  • 노희석 (현대제철 연구개발본부 모빌리티부품연구팀) ;
  • 유주현 (현대제철 연구개발본부 모빌리티부품연구팀) ;
  • 박철민 (KCC 중앙연구소 유기부분 칼라&분산) ;
  • 이수연 (한국재료연구원 나노표면재료연구본부 전기화학연구실) ;
  • 문성모 (한국재료연구원 나노표면재료연구본부 전기화학연구실)
  • Received : 2023.12.04
  • Accepted : 2023.12.21
  • Published : 2023.12.29

Abstract

In this work, we performed a comparative study examining two coatings on Ti Gr.1 for use in fuel cell bipolar plates. The coatings consisted of carbon black as the conductor along with acrylic polymer and Ti Sol-Gel binder as the binder. Ti Sol-Gel that had precipitated as TiO2 in areas impregnated between carbon black gaps, thereby acting as a binder for carbon black and serving as a polymer coating. Neither of the coatings peeled off during the 90° bend test to check formability. The contact resistance of the TiO2 coating was found to be lower than that of the polymer binder coating. Moreover, due to coating shrinkage (denser) that occurred during the heat treatment process, the TiO2 binder coating showed almost the same level of corrosion resistance, as measured by potentiostatic and EIS tests, despite being thinner than the polymer coating. However, both the polymer binder coating and the TiO2 binder coating had many pores and irregularities internally (around 10 ~ 100 nm) and on the surface (0.1 ~ 2 ㎛). We considered that these pores and irregularities contributed to the lower corrosion resistance.

Keywords

Acknowledgement

이 연구는 2023년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다(20015756, 대형 상용차용 연료전지 스택 내구성 확보 운전기술 개발).

References

  1. International Energy Agency, https://www.iea.org/reports/co2-emissions-in-2022 (2023).
  2. W. Steffen, W. Broadgate, L. Deutsch, O. Gaffney, C. Ludwig, The Trajectory of the Anthropocene: the Great Acceleration, Anthropocene Review, 2, 81 (2015). Doi: https://doi.org/10.1177/2053019614564785
  3. Goddard Space Flight Center, National Aeronautics and Space Administration, https://earthobservatory.nasa.gov/world-of-change/global-temperatures (2023).
  4. European Commission, Commission proposes new Euro 7 standards to reduce pollutant emissions from vehicles and improve air quality, https://ec.europa.eu/commission/presscorner/detail/en/ip_22_6495 (2022).
  5. International Energy Agency, World Energy Outlook, https://iea.blob.core.windows.net/assets/830fe099-5530-48f2-a7c1-11f35d510983/WorldEnergyOutlook2022.pdf (2022).
  6. Unite State Environmental Protection Agency, https://www.epa.gov/lep/migug-daegioyeombangjibeob-yoyag (2023).
  7. D. D. Wolf, Comparison of Battery Electric Vehicles and Fuel Cell Vehicles, World Electric Vehicle Journal, 14, 262 (2003). Doi: https://doi.org/10.3390/wevj14090262
  8. V. Aravindan, J. Gnanaraji, Y. S. Lee, S. Madhavi, Insertion-type electrodes for nonaqueous Li-ion capacitors, Chemical Reviews, 114, 11619 (2014). Doi: https://doi.org/10.1021/cr5000915
  9. O. Z. Sharaf and M. F. Orhan, A Overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, 32, 810 (2014). Doi: https://doi.org/10.1016/j.rser.2014.01.012
  10. S. C. Lee, W. Y. Jung, Analogical Understanding of the Ragone plot and a New Categorization of Energy Devices, Energy Procedia, 88, 526 (2016). Doi: https://doi.org/10.1016/j.egypro.2016.06.073
  11. S. G. Kandlikar, Z. Lu, Thermal management issues in a PEMFC stack - A brief review of current status, Applied Thermal Engineering, 29, 1276 (2009). Doi: https://doi.org/10.1016/j.applthermaleng.2008.05.009
  12. J. Ryouske, Automotive Engineering Series5: A principles and Application of Fuel Cell, Toyoto Central R&D Lab. 12-83 (2023).
  13. Z. Xu, D. Qiu, P. Yi, L. Peng, X. Lai, Towards mass applications:?A review on the challenges and developments in metallic bipolar plates for PEMFC, Progress in Natural Science: Materials International, 30, 815 (2020). Doi: https://doi.org/10.1016/j.pnsc.2020.10.015
  14. D. Pagageorgopoulos, Proc. 2023 Annual Merit Review, Fuel Cell Technologies subprogram Overview, Arlington, VA, USA (2023). https://www.hydrogen.energy.gov/docs/hydrogenprogramlibraries/pdfs/review23/fc000_papageorgopoulos_2023_o.pdf
  15. R. K. Gautam, S. Banerjee and K. K. Kar, Bipolar plate materials for proton exchange membrane fuel cell application, Recent Patents on Material Science, 8, 15 (2015). Doi: https://doi.org/10.2174/1874464808666150306223104
  16. Hydrogen and Fuel Cell Technologies office of Department of Energy, DOE Technical Targets for polymer electrolyte membrane fuel cell components, https://www.energy.gov/eere/fuelcells/doe-technical-targets-polymer-electrolyte-membrane-fuel-cell-components#bipolarplate
  17. R. A. Antunes, M. C. L. Oliveira, G. Ett, and V. Ett, Corrosion of metal bipolar plates for PEM fule cells : A Review, International Journal of Hydrogen Energy, 35, 3632 (2010). Doi: https://doi.org/10.1016/j.ijhydene2010.01.059
  18. N. F. Asri, T. Husaini, A. B. Sulong, E. H. Majlan and W. R. W. Daud, Coating of stainless steel and titanium bipolar plates for anticorrosion in PEMFC: A review, International Journal of Hydrogen Energy, 42, 9135, (2017). Doi: https://doi.org/10.1016/j.ijhydene.2016.06.241
  19. D. Wang, G. P. Bierwagen, Sol-gel coatings on metals for corrosion protection, Progress in Organic Coatings, 64(4), 327 (2009). Doi: https://doi.org/10.1016/j.porgcoat.2008.08.010
  20. J. G. Mahy, L. Lejeune, T. Haynes, S. D. Lambert, R. Henrique, M. Marcilli, C. A. Fustin and S. Hermans, EcoFriendly Colloidal Aqueous Sol-Gel Process for TiO2 Synthesis : The Peptization Method to Obtain Crystalline and Photoactive Materials at Low Temperature, Catalysts, 11, 768 (2021). Doi: https://doi.org/10.3390/catal11070768
  21. K. Pelissier and D. Thierry, Powder and High-Solid Coatings as Anticorrosive Solution for Marine and Offshore Applications? A Review, Coatings, 10, 916 (2020). Doi: https://doi.org/10.3390/coatings10100916
  22. A. Cenovar, P. Paunovic, A. Grozdanov, P. Makreski, E. Fidancevska, Preparation of nano-crystalline TiO2 by Sol-gel method using titanium tetraisopropoxide (TTIP) as a precursor, Advances in Natural Science: Theory & Applications, 1, 133 (2012).
  23. L. Molmen, L. Fast, A. Lundblad, P. Eriksson and P. Leisner, Contact resistance measurement methods for PEM fuel cell bipolar plates and power terminals, Journal of Power Sources, 555, 232341 (2023). Doi: https://doi.org/10.1016/j.jpowsour.2022.232341
  24. N. Shaigan, X. Z. Yuan, F. Girard, K. Fatih, M. Robertson, Standardized testing framework for quality control of fuel cell bipolar plates, Journal of Power Sources, 482, 228972 (2021). Doi: https://doi.org/10.1016/j.jpowsour.2020.228972
  25. A. F. Arif, R. B. Balgis, T. Ogi, F. Iskandar, A. Kinoshita, K. Nakamura and K. Okuyama, Highly Conductive nano-sized Magneli phases titanium oxide (TiOx), Scientific Reports, 7, 3646 (2017).
  26. T. Sekiya, T. Yagisawa, N. Kamiya, D. D. Mulmi, S. Kurita and Y. Murakami, Defects in Anatase TiO2 Single Crystal Controlled by Heat Treatments, Journal of the Physical Society of Japan, 73, 703 (2004). Doi: https://doi.org/10.1143/JPSJ.73.703
  27. K. H. Wong and E. Kjeang, Mitigation of chemical membrane degradation in fuel cell: understanding the effect of cell voltage and iron ion redox cycle, Chemistry Sustainability Energy Materials, 8, 1072 (2014). Doi: https://doi.org/10.1002/cssc.201402957
  28. T, Tsuneda, Fenton reaction mechanism generating no OH radicals in Nafion membrane decomposition, Scientific Reports, 10, 18144 (2020).
  29. X. Z. Yuan, H. Li, S. Zhang, J. Martin, H. Wang, A review of polymer electrolyte membrane fuel cell durability test protocol, Journal of Power Sources, 196, 9107 (2011). Doi: https://doi.org/10.1016/j.jpowsour.2011.07.082
  30. A. Pozio, R. F. Silva, M. D. Framcesco and L. Giorgi, Nafion degradation in PEFCs from end plate iron contamination, Electrochimica Acta, 48, 1543 (2003). Doi: https://doi.org/10.1016/S0013-4686(03)00026-4
  31. P. Ren, P. Pei, Y. Li, Z. Wu, D. Chen and S. Huang, Degradation mechanism of proton exchange membrane fuel cell under typical automotive operating condition, progress in Energy and Combustion Science, 80, 100859 (2020). Doi: https://doi.org/10.1016/j.pecs.2020.100859
  32. Z. Liu, T. Wang, X. Yu, Z. Geng, Y. Sang, H. Liu, In situ alternative switching between Ti4+ and Ti3+ driven by H2O2 in TiO2 nanostructures: mechanism of pseudo-Fenton reaction, Materials Chemistry Frontiers, 1, 1989 (2017). Doi: https://doi.org/10.1039/C7QM00163K
  33. J. E. A. M. van den Meerakker, On the mechanism of electroless plating. II. One mechanism for different reductants, Journal of Applied Electrochemistry, 11, 395 (1981)
  34. F. Fasmin, B. V. S. Praveen and S. Ramanathan, A Kinetic Model for the Anodic Dissolution of Ti in HF in the Active and Passive Regions, Journal of The Electrochemical Society, 162, 604 (2015). Doi: https://doi.org/10.1149/2.0251509jes
  35. M. Motoshichi, S. Muraji, K. Eishin and I. Syu, Reaction of Hydrogen Peroxide with Titanium (IV) at Different pH values, Bulletin of the Chemical Society of Japan, 29, 904 (1956). Doi: https://doi.org/10.1246/bcsj.29.904
  36. M. Pourbaix, NACE, USA, 213 (1974). http://sunlight.caltech.edu/aic/pourbaix.pdf
  37. Gamry, https://www.gamry.com/assets/Uploads/EISCorrosionCoatings.pdf
  38. C. G. Oliveira and M. G. S. Ferreira, Ranking high-quality paint system using EIS. Part I: Intact coatings, Corrosion Science, 45, 123 (2003). Doi: https://doi.org/10.1016/S0010-938X(02)00088-4
  39. G. Grundmeier, W. Schmidt and M. Stratmann, Corrosion protection by organic coatings: electrochemical mechanism and novel methods of investigation, Electrochemica Acta, 45, 2515 (2000). Doi: https://doi.org/10.1016/S0013-4686(00)00348-0
  40. J. M. Mclntyre, H. Q. Pham, Electrochemical Impedance spectroscopy; a tool for organic coating optimization, Progress in Organic Coatings, 27, 201 (1996). Doi: https://doi.org/10.1016/0300-9440(95)00532-3
  41. A. Amirudin and D. Thierry, Corrosion mechanisms of phosphated zinc layers on steel as substrates for automotive coatings, Progress in Organic Coatings, 28, 59 (1996). Doi: https://doi.org/10.1016/0300-9440(95)00554-4