DOI QR코드

DOI QR Code

Cybersickness and Experience of Viewing VR Contents in Augmented Reality

증강현실에서의 가상현실 콘텐츠 시청 경험과 사이버 멀미

  • 오지영 (고려대학교 심리학부(행동인지신경과학전공)) ;
  • 진민성 (고려대학교 심리학부(행동인지신경과학전공)) ;
  • 박시온 (고려대학교 심리학부(행동인지신경과학전공)) ;
  • 송세윤 (고려대학교 심리학부(행동인지신경과학전공)) ;
  • 전수빈 (고려대학교 심리학부(행동인지신경과학전공)) ;
  • 이유정 (고려대학교 심리학부) ;
  • 신혜지 (고려대학교 심리학부(행동인지신경과학전공)) ;
  • 김채연 (고려대학교 심리학부)
  • Received : 2023.08.28
  • Accepted : 2023.11.01
  • Published : 2023.12.31

Abstract

Augmented reality (AR) and virtual reality (VR) differ fundamentally, with AR overlaying computer-generated information onto the real world in a nonimmersive way. Despite extensive research on cybersickness in VR, its occurrence in AR has received less attention (Vovk et al., 2018). This study examines cybersickness and discomfort associated with AR usage, focusing on the impact of content intensity and exposure time. Participants viewed 30-minute racing simulation game clips through AR equipment, varying in racing speed to alter content intensity. Cybersickness was assessed subjectively using the Simulator sickness questionnaire (SSQ; Kennedy et al., 1993). Findings revealed a progressive increase in cybersickness with longer exposure, persisting even after removing the AR equipment. Contrarily, content intensity did not significantly influence cybersickness levels. Analysis of the SSQ subscales revealed higher oculomotor (O) scores compared to nausea (N) and disorientation (D), suggesting that discomfort primarily stemmed from oculomotor strain. The study highlights distinct differences in user experience between AR and VR, specifically in subjective responses.

증강현실은 가상현실과는 구별되는 개념으로, 실제 세계와 가상 세계의 요소가 혼합된 상호작용 환경이다. 본 연구는 가상현실 또는 일상에서 노출될 수 있는 일반적인 콘텐츠를 활용하여, 증강현실이 사용자 경험에 미치는 영향을 검증하였다. 본 연구에서는 증강현실 사이버 멀미를 유발하기 위해서 조건에 따라 증강현실 노출 시간과 콘텐츠의 움직임 속도를 조작하였다. 실험 과정에서 참가자는 증강현실 기기를 120분 동안 착용하고 30분씩 시뮬레이션 레이싱 게임을 시청하며 색 변화 탐지 과제를 수행하였고, 그로 인해 유발된 주관적인 불편감을 SSQ 설문지를 이용해 보고하였다. 실험 결과, 증강현실 노출 시간이 길어질수록 사이버 멀미는 점진적으로 증가하였으며 기기를 해제한 후에도 사이버 멀미는 지속되었다. 하지만, 움직임 속도는 사이버 멀미에 미미한 영향을 미쳤다. 특히, 메스꺼움 증상과 방향 감각 상실 증상이 높게 유발되는 가상현실과는 다르게 증강현실은 안구 운동 불편감에 대한 보고가 높게 관찰되었다. 본 연구는 증강현실 경험이 가상현실 경험과는 구별됨을 보여주며, 증강현실 경험으로 유발될 수 있는 인체 영향성을 다면적으로 측정했다는 점에서 의의가 있다.

Keywords

Acknowledgement

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20016186).

References

  1. Ames, S. L., Wolffsohn, J. S., & Mcbrien, N. A. (2005). The development of a symptom questionnaire for assessing virtual reality viewing using a head-mounted display. Optometry and Vision Science, 82(3), 168-176. https://doi.org/10.1097/01.OPX.0000156307.95086.6
  2. Brainard, D. H., & Vision, S. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433-436. https://doi.org/10.1163/156856897X00357
  3. Chang, E., Kim, H. T., & Yoo, B. (2020). Virtual reality sickness: A review of causes and measurements. International Journal of Human-Computer Interaction, 36(17), 1658-1682. https://doi.org/10.1080/10447318.2020.1778351
  4. Choi, S., Lee, W., Kim, H., Won, J., Lee, J., Lee, Y., & Kim, J. (2017). The effects of virtual competitiors on AR (Augmented Reality) hom training system: focusing on immersion, Perceived Competition, and Learning Motivation. Science of Emotion and Sensibility, 20(3), 119-130. https://doi.org/10.14695/KJSOS.2017.20.3.119
  5. Dargan, S., Bansal, S., Kumar, M., Mittal, A., & Kumar, K. (2023). Augmented reality: a comprehensive review. Archives of Computational Methods in Engineering, 30(2), 1057-1080. https://doi.org/10.1007/s11831-022-09831-7
  6. Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47(5), 507-516. https://doi.org/10.1016/S0361-9230(98)00091-4
  7. Golding, J. F., Rafiq, A., & Keshavarz, B. (2021). Predicting individual susceptibility to visually induced motion sickness by questionnaire. Frontiers in Virtual Reality, 2, 576871.
  8. Holmes, N. P. (2009). The principle of inverse effectiveness in multisensory integration: some statistical considerations. Brain Topography, 21, 168-176. https://doi.org/10.1007/s10548-009-0097-2
  9. Hughes, C. L., Fidopiastis, C., Stanney, K. M., Bailey, P. S., & Ruiz, E. (2020). The psychometrics of cybersickness in augmented reality. Frontiers in Virtual Reality, 1, 602954.
  10. Jang, K. M., Kwon, M., Nam, S. G., Kim, D., & Lim, H. K. (2022). Estimating objective (EEG) and subjective (SSQ) cybersickness in people with susceptibility to motion sickness. Applied Ergonomics, 102, 103731.
  11. Jeon, H., Chang, E., Wendimagegn, T. W., Park, C. H., Jeong, J. W., & Kim, H. T. (2015). Deveolpment of vestibulo-ocular reflex measurement system for the study of cybersickness. Science of Emotion and Sensibility, 18(1), 27-38
  12. Kracauer, S. (1997). Theory of film: The redemption of physical reality. Princeton University Press.
  13. Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203-220. https://doi.org/10.1207/s15327108ijap0303_3
  14. Kennedy, R. S., Stanney, K. M., & Dunlap, W. P. (2000). Duration and exposure to virtual environments: Sickness curves during and across sessions. Presence: Teleoperators & Virtual Environments, 9(5), 463-472. https://doi.org/10.1162/105474600566952
  15. Kim, Y. M., Bahn, S., & Yun, M. H. (2021). Wearing comfort and perceived heaviness of smart glasses. Human Factors and Ergonomics in Manufacturing & Service Industries, 31(5), 484-495. https://doi.org/10.1002/hfm.20895
  16. Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616-625. https://doi.org/10.1111/j.1469-8986.2005.00349.x
  17. Kim, Y., Kim, E., Ko, D., & Kim, H. (2003). The positive effect of motion platform in virtual navigation. Korean Journal of the Science of Emotion & Sensibility, 6(1), 11-16.
  18. Kong, H. I., & Han, K. H. (2019). The influence of food image presentation on purchase intention with the use of augmented reality: the mediation effect of user engagement. Science of Emotion and Sensibility, 22(3), 65-76. https://doi.org/10.14695/KJSOS.2018.22.3.65
  19. Mazloumi Gavgani, A., Hodgson, D. M., & Nalivaiko, E. (2017). Effects of visual flow direction on signs and symptoms of cybersickness. PloS One, 12(8), e0182790.
  20. Mazloumi Gavgani, A., Walker, F. R., Hodgson, D. M., & Nalivaiko, E. (2018). A comparative study of cybersickness during exposure to virtual reality and "classic" motion sickness: Are they different?. Journal of Applied Physiology, 125(6), 1670-1680. https://doi.org/10.1152/japplphysiol.00338.2018
  21. Meredith, M. A., & Stein, B. E. (1983). Interactions among converging sensory inputs in the superior colliculus. Science, 221(4608), 389-391. https://doi.org/10.1126/science.6867718
  22. Ma, J. Y., & Choi, J. S. (2007). The virtuality and reality of augmented reality. Journal of Multimedia, 2(1), 32-37.
  23. Mittelstaedt, J. M., Wacker, J., & Stelling, D. (2019). VR aftereffect and the relation of cybersickness and cognitive performance. Virtual Reality, 23, 143-154. https://doi.org/10.1007/s10055-018-0370-3
  24. Pelli, D. G., & Vision, S. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442. https://doi.org/10.1163/156856897X00366
  25. Prince, S. (1996). True lies: Perceptual realism, digital images, and film theory.
  26. Prinzmetal, W., McCool, C., & Park, S. (2005). Attention: reaction time and accuracy reveal different mechanisms. Journal of Experimental Psychology: General, 134(1), 73.
  27. Rebenitsch, L., & Owen, C. (2014, October). Individual variation in susceptibility to cybersickness. In Proceedings of the 27th annual ACM symposium on User interface software and technology (pp. 309-317).
  28. So, R. H., Ho, A., & Lo, W. T. (2001). A metric to quantify virtual scene movement for the study of cybersickness: Definition, implementation, and verification. Presence, 10(2), 193-215. https://doi.org/10.1162/105474601750216803
  29. So, R. H., Lo, W. T., & Ho, A. T. (2001). Effects of navigation speed on motion sickness caused by an immersive virtual environment. Human Factors, 43(3), 452-461. https://doi.org/10.1518/001872001775898223
  30. Stanney, K. (1995, March). Realizing the full potential of virtual reality: Human factors issues that could stand in the way. In Proceedings Virtual Reality Annual International Symposium'95 (pp. 28-34). IEEE.
  31. Stanney, K. M., Hale, K. S., Nahmens, I., & Kennedy, R. S. (2003). What to expect from immersive virtual environment exposure: Influences of gender, body mass index, and past experience. Human Factors, 45(3), 504-520. https://doi.org/10.1518/hfes.45.3.504.27254
  32. Vovk, A., Wild, F., Guest, W., & Kuula, T. (2018, April). Simulator sickness in augmented reality training using the Microsoft HoloLens. In Proceedings of the 2018 CHI conference on human factors in computing systems (pp. 1-9).
  33. Weech, S., Kenny, S., & Barnett-Cowan, M. (2019). Presence and cybersickness in virtual reality are negatively related: A review. Frontiers in Psychology, 10, 158.
  34. Witmer, B. G., Jerome, C. J., & Singer, M. J. (2005). The factor structure of the presence questionnaire. Presence: Teleoperators & Virtual Environments, 14(3), 298-312. https://doi.org/10.1162/105474605323384654
  35. Zhou, C., Bryan, C. L., Wang, E., Artan, N. S., & Dong, Z. (2019, November). Cognitive distraction to improve cybersickness in virtual reality environment. In 2019 IEEE 16th international conference on mobile ad hoc and sensor systems workshops (MASSW) (pp. 72-76). IEEE.