DOI QR코드

DOI QR Code

The Effect of Structure and Acidity of Fluorinated HZSM-5 on Ethylene Aromatization

불소화 HZSM-5의 구조 및 산도가 에틸렌 방향족화에 미치는 영향

  • Kyeong Nan, Kim (C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology) ;
  • Seok Chang, Kang (C1 Gas & Carbon Convergent Research Center, Korea Research Institute of Chemical Technology) ;
  • Geunjae, Kwak (Department of Science Education, Gwangju National University of Education)
  • 김경난 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 강석창 (한국화학연구원(KRICT) C1가스탄소융합연구센터) ;
  • 곽근재 (광주교육대학교 과학교육과)
  • Received : 2022.12.14
  • Accepted : 2022.12.26
  • Published : 2023.02.10

Abstract

Recent studies have actively investigated ways to improve the economic feasibility and efficiency of the Fischer-Tropsch process by increasing the yields of the monocyclic aromatic compounds (BTEX). In this study, ethylene was selected as a model of F-T-derived hydrocarbons, and the ethylene-to-aromatics (ETA) reaction was investigated according to changes in acid characteristics, mesopores, and crystallinity of HZSM-5 (HZ5). Fluorinated HZ5 was prepared by calcination followed by impregnation of an aqueous NH4F solution having different molar concentrations in HZ5, and the structural and chemical properties of F/HZ5 were investigated through Brunauer-Emmett-Teller (BET), solid-state nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), NH3-temperature-programmed desorption (TPD), and pyridine-IR spectroscopy. The ETA reactions were performed at 673 K under 0.1 MPa, and fluorinating HZ5 by an aqueous NH4F solution of 0.17 M improved ethylene conversion, BTEX selectivity, and catalytic stability due to acidity, mesopore fraction, and crystallinity.

최근, 피셔-트롭시(Fischer-Tpropsch, F-T) 합성 생성물의 단환방향족(BTEX) 수율을 향상시켜 공정 경제성 및 효율을 높이기 위한 연구가 활발하다. 본 연구에서는, F-T 유래 탄화수소의 모델로서 에틸렌을 선정하고, HZSM-5 (HZ5)의 산특성, 메조기공율 및 결정화도 변화에 따른 에틸렌으로부터 방향족 합성 반응(ethylene-to-aromatics, ETA) 거동에 대하여 조사하였다. HZ5에 몰농도를 달리한 NH4F 수용액을 함침 및 소성하여 불소 도입 HZ5를 제조하였으며, F/HZ5의 구조 및 화학적 특성은 BET, 고체 NMR, XPS, NH3-TPD 및 피리딘-IR 분광법을 통하여 조사되었다. ETA 반응은 673 K, 0.1 MPa의 조건에서 실시되었으며, 0.17 M NH4F 수용액 처리에 의한 불소화 HZ5는 산특성, 메조기공율 및 결정성 향상에 기인하여 에틸렌 전환율, BTEX 선택도 및 촉매 안정성이 향상되었다.

Keywords

Acknowledgement

본 과제(결과물)는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다. (2021RIS-004)

References

  1. A. P. Ortiz-Espinoza, M. M. B. Noureldin, M. M. El-Halwagi, and A. Jimenez-Gutierrez, Design, simulation and techno-economic analysis of two processes forthe conversion of shale gas to ethylene, Comput. Chem. Eng., 107, 237-246 (2017). https://doi.org/10.1016/j.compchemeng.2017.05.023
  2. W. Taifan and J. Baltrusaitis, CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal. B: Environ., 198, 525-547 (2016). https://doi.org/10.1016/j.apcatb.2016.05.081
  3. X. Yang, X. Su, D. Chen, T. Zhang, and Y. Huang, Direct conversion of syngas to aromatics: A review of recent studies, Chinese J. Catal., 41, 561-573 (2020). https://doi.org/10.1016/s1872-2067(19)63346-2
  4. G. Tian, X. Liu, C. Zhang, X. Fan, H. Xiong, X. Chen, Z. Li, B. Yan, L. Zhang, N. Wang, H.-J. Peng, and F. Wei, Accelerating syngas-to-aromatic conversion via spontaneously monodispersed Fe in ZnCr2O4 spinel, Nat. Commun., 13, 5567-5577 (2022). https://doi.org/10.1038/s41467-022-33217-9
  5. Y. Xu, J. Liu, J. Wang, G. Ma, J. Lin, Y. Yang, Y. Li, C. Zhang, and M. Ding, Selective conversion of syngas to aromatics over Fe3O4@MnO2 and hollow HZSM-5 bifunctional catalysts, ACS Catal., 9, 5147-5156 (2019). https://doi.org/10.1021/acscatal.9b01045
  6. S. C. Kang, G. Park, G. Kwak, C. Zhang, K. W. Jun, Y. T. Kim, and M. Choi, Enhancing Selectivity of Aromatics in Direct Conversion of Syngas over K/FeMn and HZSM-5 Bifunctional Catalysts, Mol. Catal., 533, 112790 (2022).
  7. A. A. Muleja, Y. Yao, D. Glasser, and D. Hildebrandt, A study of Fischer-Tropsch synthesis: Product distribution of the light hydrocarbon, Appl. Catal. A: Gen., 517, 217-226 (2016). https://doi.org/10.1016/j.apcata.2016.03.015
  8. J. Gorimbo, A. Muleja, X. Liu, and D. Hildebrandt, Fischer-Tropsch synthesis: product distribution, operating conditions, iron catalyst deactivation and catalyst speciation, Int. J. Ind. Chem., 9, 317-333 (2018). https://doi.org/10.1007/s40090-018-0161-4
  9. S. C. Kang, K. Jun, and Y. Lee, Effects of the CO/CO2 ratio in synthesis gas on the catalytic behavior in Fischer-Tropsch synthesis using K/Fe-Cu-Al catalysts, Energy Fuels, 27, 6377-6387 (2013). https://doi.org/10.1021/ef401177k
  10. A. P. Steynberg, R. L. Espinoza, B. Jager, and A. C. Voslo, High temperature Fischer-Tropsch synthesis in commercia, Appl. Catal. A: Gen., 186, 41-54 (1999). https://doi.org/10.1016/S0926-860X(99)00163-5
  11. C. Zhang, K. Jun, R. Gao, G. Kwak, and H. Park, Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steammixed reforming: Techno-economic analysis. Fuel, 190, 303-311 (2017). https://doi.org/10.1016/j.fuel.2016.11.008
  12. D. J. Safarik and R. B. Eldridge, Olefin/paraffin separations by reactive absorption: A review. Ind. Eng. Chem. Res., 37, 2571-2581 (1998). https://doi.org/10.1021/ie970897h
  13. J. Lennart Weber, I. Dugulan, P. E. de Jongh, and K. P. de Jong, Bifunctional catalysis for the conversion of synthesis gas to olefins and aromatics, ChemCatChem, 10,1107-1112 (2018). https://doi.org/10.1002/cctc.201701667
  14. J. Yang, X. Pan, F. Jiao, J. Li, and X. Bao, Direct conversion of syngas to aromatics, Chem. Commun., 53, 11146-11149 (2017). https://doi.org/10.1039/C7CC04768A
  15. K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, and Y. Wang, Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability, Chem, 3, 334-347 (2017). https://doi.org/10.1016/j.chempr.2017.05.007
  16. X. Zhu, L. L. Lobban, R. G. Mallinson, and D. E. Resasco, Tailoring the mesopore structure of HZSM-5 to control product distribution in the conversion of propanal, J. Catal., 271, 88-98. (2010). https://doi.org/10.1016/j.jcat.2010.02.004
  17. J. C. Vedrine, P. Dejaifve, E. D. Garbowski, and E. G. Derouane, Aromatics formation from methanol and light olefins conversions on H-ZSM-5 zeolite: Mechanism and intermediate species, Stud. Surf. Sci. Catal., 5, 29-37 (1980). https://doi.org/10.1016/S0167-2991(08)64862-4
  18. N. S. Gnep, J. Y. Doyemet, A. M. Seco, F. R. Ribeiro, and M. Guisnet, Conversion of light alkanes to aromatic hydrocarbons: II. Role of gallium species in propane transformation on GaZSM5 catalysts, Appl. Catal., 43, 155-166 (1988). https://doi.org/10.1016/S0166-9834(00)80908-2
  19. M. Guisnet, N. S. Gnep, D. Aittaleb, and Y. J. Doyemet, Conversion of light alkanes into aromatic hydrocarbons: VI. Aromatization of C2-C4 alkanes on H-ZSM-5 -reaction mechanisms, Appl. Catal. A: Gen., 87, 255-270 (1992). https://doi.org/10.1016/0926-860X(92)80060-P
  20. M. Berggrund, H. H. Ingelsten, M. Skoglundh, and A. E. C. Palmqvist, Influence of synthesis conditions for ZSM-5 on the hydrothermal stability of Cu-ZSM-5, Catal. Lett., 130, 79-85 (2009). https://doi.org/10.1007/s10562-009-9890-5
  21. Y. Song, X. Zhu, S. Xie, Q. Wang, and L. Xu, The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalysts, Catal. Lett., 97, 31-36 (2004). https://doi.org/10.1023/B:CATL.0000034281.58853.76
  22. M. Ogura, S. Shinomiya, J. Tateno, Y. Nara, M. Nomura, E. Kikuchi, and M. Matsukata, Alkali-treatment technique - new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites, Appl. Catal. A: Gen., 219, 33-43 (2001). https://doi.org/10.1016/S0926-860X(01)00645-7
  23. L. Zhao, C. Xu, S. Gao, and B. Shen, Effects of concentration on the alkali-treatment of ZSM-5 zeolite: A study on dividing points, J. Mater. Sci., 45, 5406-5411 (2010). https://doi.org/10.1007/s10853-010-4593-2
  24. H. Mochizuki, T. Yokoi, H. Imai, S. Namba, J. N. Kondo, and T. Tatsum, Effect of desilication of H-ZSM-5 by alkali treatment on catalytic performance in hexane cracking, Appl. Catal. A: Gen., 449, 188-197 (2012). https://doi.org/10.1016/j.apcata.2012.10.003
  25. R. L. V. Mao, T. S. Le, M. Fairbairn, A. Muntasar, S. Xiao, and G. Denes, ZSM-5 zeolite with enhanced acidic properties, Appl. Catal. A: Gen., 185, 41-52 (1999). https://doi.org/10.1016/S0926-860X(99)00132-5
  26. T. S. Le and R. L. V. Mao, Preparation of fluorinated-desilicated ZSM-5 zeolites with high surface acidity properties, Microporous Mesoporous Mater., 34, 93-97 (2000). https://doi.org/10.1016/S1387-1811(99)00163-8
  27. Q. Yang, M. Kong, Z. Fan, X. Meng, J. Fei, and F. S. Xiao, Aluminum fluoride modified HZSM-5 zeolite with superior performance in synthesis of dimethyl ether from methanol, Energy Fuels, 26, 4475-4480 (2012). https://doi.org/10.1021/ef3006383
  28. N. A. Sanchez, J. M. Saniger, J. B. Caillerie, A. L. Blumenfeld, and J. J. Fripiat, Reaction of HY zeolite with molecular fluorines, J. Catal., 201, 80-88 (2001). https://doi.org/10.1006/jcat.2001.3226
  29. H. Yang, C. Ma, G. Wang, Y. Sun, J. Cheng, Z. Zhang, X. Zhang, and Z. Hao, Fluorine-enhanced Pt/ZSM-5 catalysts for low-temperature oxidation of ethylene, Catal. Sci. Technol., 8, 1988-1996 (2018). https://doi.org/10.1039/C8CY00130H
  30. T. Xu, Q. Zhang, H. Song, and Y. Wang, Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides, J. Catal., 295, 232-241 (2012). https://doi.org/10.1016/j.jcat.2012.08.014
  31. I. Lara-Ibeas, C. Megias-Sayago, A. Rodriguez-Cuevas, R. OcampoTorres, B. Louis, S. Colin, and S. Le Calve, Adsorbent screening for airborne BTEX analysis and removal, J. Environ. Chem. Eng., 8, 103563-103572 (2020). https://doi.org/10.1016/j.jece.2019.103563
  32. M. A. El-Okazy, L. Liu, Y. Zhang, and S. E. Kentisha, The iMPact of water, BTEX compounds and ethylene glycol on the performance of perfluoro(butenyl vinyl ether) based membranes for CO2 capture from natural gas, J. Membr. Sci., 654, 120557-120567 (2022). https://doi.org/10.1016/j.memsci.2022.120557
  33. A. E. Mohajir, J. Castro-Gutierrez, R. L. S. Canevesi, I. Bezverkhyy, G. Weber, J. Bellat, F. Berger, A. Celzard, V. Fierro, and J. Sanchez, Novel porous carbon material for the detection of traces of volatile organic compounds in indoor air, ACS Appl. Mater. Interfaces, 13, 40088-40097 (2021). https://doi.org/10.1021/acsami.1c10430
  34. J. S. Im, S. C. Kang, S. H. Lee, and Y. S. Lee, Improved gas sensing of electrospun carbon fibers based on pore structure, conductivity and surface modification, Carbon, 48, 2573-2581 (2010). https://doi.org/10.1016/j.carbon.2010.03.045
  35. L. Zhai, B. Zhang, H. Liang, H. Wu, X. Yang, G. Luo, S. Zhao, and Y. Qin, The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone, Sci. China Chem., 64, 1088-1095 (2021). https://doi.org/10.1007/s11426-020-9968-x
  36. L. Rodriguez-Gonzalez, F. Hermes, M. Bertmer, E. RodriguezCastellon, A. Jimenez-Lopez, and U. Simon, The acid properties of H-ZSM-5 as studied by NH3-TPD and 27Al-MAS-NMR spectroscopy, Appl. Catal. A: Gen., 328, 174-182 (2007). https://doi.org/10.1016/j.apcata.2007.06.003
  37. R. Zhao, S. Li, L. Bi, Q. Fu, H. Tan, M. Wang, and H. Cui, Enhancement of p-xylene selectivity in the reaction between 2,5-dimethylfuran and ethanol over an ammonium fluoride-modified ZSM-5 zeolite, Catal. Sci. Technol., 12, 2248-2256 (2022). https://doi.org/10.1039/D1CY01793D
  38. M. Khalfaoui, S. Knani, M. A. Hachicha, and A. Ben Lamin, New theoretical expressions for the five adsorption type isotherms classified by BET based on statistical physics treatment, J. Colloid Interface Sci., 263, 350-356 (2003). https://doi.org/10.1016/S0021-9797(03)00139-5
  39. Y. Tao, H. Kanoh, and K. Kaneko, ZSM-5 monolith of uniform mesoporous channels, J. Am. Chem. Soc., 125, 6044-6045 (2003). https://doi.org/10.1021/ja0299405
  40. R. W. Borry, Y. H. Kim, A. Huffsmith, J. A. Reimer, and E. Iglesia, Structure and density of mo and acid sites in mo-exchanged H-ZSM5 catalysts for nonoxidative methane conversion, J. Phys. Chem. B, 103, 5787-5796 (1999). https://doi.org/10.1021/jp990866v