DOI QR코드

DOI QR Code

Development of a Centrifugal Microreactor for the Generation of Multicompartment Alginate Hydrogel

다중 알긴산 입자제조를 위한 원심력 기반 미세유체 반응기 개발

  • Ju-Eon, Jung (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Song (Department of Civil, Environmental, and Biomedical Engineering, the Graduate School, Sangmyung University) ;
  • Sung-Min, Kang (Department of Green Chemical Engineering, Sangmyung University)
  • 정주언 (상명대학교 그린화학공학과) ;
  • 송강 (상명대학교 건설.환경.의생명공학과) ;
  • 강성민 (상명대학교 그린화학공학과)
  • Received : 2022.11.23
  • Accepted : 2022.12.26
  • Published : 2023.02.10

Abstract

Microfluidic reactors have been made to achieve significant development for the generation of new functional materials to apply in a variety of fields. Over the last decade, microfluidic reactors have attracted attention as a user-friendly approach that is enabled to control physicochemical parameters such as size, shape, composition, and surface property. Here, we develop a centrifugal microfluidic reactor that can control the flow of fluid based on centrifugal force and generate multifunctional particles of various sizes and compositions. A centrifugal microfluidic reactor is fabricated by combining microneedles, micro- centrifuge tubes, and conical tubes, which are easily obtained in the laboratory. Depending on the experimental control param- eters, including centrifuge rotation speed, alginate concentration, calcium ion concentration, and distance from the needle to the calcium aqueous solution, this strategy not only enables the generation of size-controlled microparticles in a simple and reproducible manner but also achieves scalable production without the use of complicated skills or advanced equipment. Therefore, we believe that this simple strategy could serve as an on-demand platform for a wide range of industrial and academic applications, particularly for the development of advanced smart materials with new functionalities in biomedical engineering.

미세유체 반응기(microfluidic reactor)는 다양한 분야에 적용할 수 있는 새로운 기능성 재료합성을 위해 상당한 발전이 이루어지고 있다. 지난 10년 동안, 미세유체 반응기는 크기, 모양, 조성 및 표면 특성과 같은 물리화학적 (physicochemical) 매개변수를 제어할 수 있는 최종 사용자를 위한 방법론이 주목을 받고 있다. 본 연구에서는 원심력 기반의 미세유체 반응기를 개발하였으며 이를 통해 유도되는 원심력을 이용하여 유체의 흐름을 제어하고 합성되는 다기능성 입자의 다양한 크기 및 조성제어를 수행하였다. 원심력 기반 미세유체 반응기는 실험실에서 쉽게 구할 수 있는 미세바늘, 미세원심분리 튜브, 대용량 원심분리 튜브의 조립을 통해 제작된다. 원심분리기의 회전 속도, 알긴산 전구체의 농도, 칼슘이온의 농도, 그리고 주사침과 칼슘 수용액 간의 거리와 같은 실험적 제어변수 조절을 통해 쉽고 재현성 있게 크기제어가 이루어진 미세입자의 합성이 가능할 뿐만 아니라 복잡한 기술이나 첨단 장비 없이 대량생산이 가능하였다.

Keywords

Acknowledgement

본 연구는 2021학년도 상명대학교 교내연구비를 지원받아 수행하였음.

References

  1. S. M. Kang, G. W. Lee, and Y. S. Huh, Centrifugal force-driven modular micronozzle system: Generation of engineered alginate microspheres, Sci. Rep., 9, 12776 (2019).
  2. S. M. Kang, M. Rethinasabapathy, G. W. Lee, C. H. Kwak, B. Park, W. S. Kim, and Y. S. Huh, Generation of multifunctional encoded particles using a tetrapod microneedle injector, J. Ind. Eng. Chem., 74, 164-171 (2019). https://doi.org/10.1016/j.jiec.2019.02.023
  3. B. Park, J. Kim, S. M. Ghoreishian, M. Rethinasabapathy, Y. S. Huh, and S. M. Kang, Generation of multi-functional core-shell adsorbents: Simultaneous adsorption of cesium, strontium and rhodamine B in aqueous solution, J. Ind. Eng. Chem., 112, 201-209 (2022). https://doi.org/10.1016/j.jiec.2022.05.014
  4. G. M. Whitesides, The origins and the future of microfluidics, Nature, 442, 368-373 (2006). https://doi.org/10.1038/nature05058
  5. C. M. Kim and G. M. Kim, Development of multilayered droplet splitting microfluidic system for preparation of microdroplet, J. Korean Soc. Precis. Eng., 39, 425-431 (2022). https://doi.org/10.7736/JKSPE.022.015
  6. P. L. Suryawanshi, S. P. Gumfekar, B. A. Bhanvase, S. H. Sonawane, and M. S. Pimplapure, A review on microreactors: Reactor fabrication, design, and cutting-edge applications, Chem. Eng. Sci., 189, 431-448 (2018). https://doi.org/10.1016/j.ces.2018.03.026
  7. A. Moreira, J. Carneiro, J. B. L. M. Campos, and J. M. Miranda, Production of hydrogel microparticles in microfluidic devices: a review. Microfluid. Nanofluidics, 25, 1-24 (2021). https://doi.org/10.1007/s10404-020-02401-y
  8. M. Xia, S.-M. Kang, G. W. Lee, Y. S. Huh, and B. J. Park, The recyclability of alginate hydrogel particles used as a palladium catalyst support, J. Ind. Eng. Chem., 73, 306-315 (2019). https://doi.org/10.1016/j.jiec.2019.01.042
  9. M. Zhang, R. Ettelaie, L. Dong, X. Li, T. Li, X. T. Li, X. Zhang, B. P. Binks, and H. Yang, Pickering emulsion droplet-based biomimetic microreactors for continuous flow cascade reactions, Nat. Commun., 13, 1-11 (2022).
  10. S. M. Kang, M. Rethinasabapathy, S. K. Hwang, G. W. Lee, S. C. Jang, C. H. Kwak, S. R. Choe, and Y. S. Huh, Microfluidic generation of prussian blue-iaden magnetic micro-adsorbents for cesium removal, Chem. Eng. J., 341, 218-226 (2018). https://doi.org/10.1016/j.cej.2018.02.025
  11. E. M. Lucchetta, M. S. Munson, and R. F. Ismagilov, Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device, Lab Chip, 6, 185-190 (2006). https://doi.org/10.1039/b516119c
  12. N. Li Jeon, H. Baskaran, S. K. W. Dertinger, G. M. Whitesides, L. V. D. Water, and M. Toner, Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device, Nat. Biotechnol., 20, 826-830 (2002). https://doi.org/10.1038/nbt712
  13. T. A. Hakala, F. Bialas, Z. Toprakcioglu, K. N. Baumann, A. Levin, G. J. L. Bernardes, C. F. W. Becker, and T. P. J. Knowles, Continuous flow reactors from microfluidic compartmentalization of enzymes within inorganic microparticles, ACS Appl. Mater. Interfaces., 12, 32951-32960 (2020). https://doi.org/10.1021/acsami.0c09226
  14. J. H. Lee, J. Y. Ma, and J. C. Kim, The preparation and release property of alginate microspheres coated gelatin-cinnamic acid, Appl. Chem. Eng., 24, 471-475 (2013). https://doi.org/10.14478/ace.2013.24.5.471
  15. N. Kikuchi, M. May, M. Zweber, J. Madamba, C. Stephens, U. Kim, and M. Mobed-Miremadi. Sustainable, alginate-based sensor for detection of escherichia coli in human breast milk, Sensors, 20, 1-15 (2020). https://doi.org/10.1109/JSEN.2019.2959158
  16. Z. Wu, Y. Zheng, L. Lin, S. Mao, Z. Li, and J. Lin, Controllable synthesis of multicompartmental particles using 3D microfluidics, Angew. Chem., 132, 2245-2249 (2020). https://doi.org/10.1002/ange.201911252
  17. G. Tang, R. Xiong, D. Lv, R. X. Xu, K. Braeckmans, C. Huang, and S. C. De Smedt, Gas-shearing fabrication of multicompartmental microspheres: A one-step and oil-free approach, Adv. Sci.., 6, 1802342 (2019).
  18. I. Kobayashi, K. Uemura, and M. Nakajima, Formulation of monodisperse emulsions using submicron-channel arrays, Colloids Surf., A: Physicochem. Eng. Asp., 296, 285-289 (2007). https://doi.org/10.1016/j.colsurfa.2006.09.015
  19. Y. Hu, G. Azadi, and A. M. Ardekani, Microfluidic fabrication of shape-tunable alginate microgels: Effect of size and impact velocity, Carbohydr. Polym., 120, 38-45 (2015). https://doi.org/10.1016/j.carbpol.2014.11.053
  20. Y. Xia and G. M. Whitesides, Soft lithography, Angew. Chem., Int. Ed., 37, 550-575 (1998). https://doi.org/10.1002/(sici)1521-3773(19980316)37:5<550::aid-anie550>3.0.co;2-g
  21. E. Verpoorte and N. F. De Rooij, Microfluidics meets MEMS, Proc. IEEE, 91, 930-953 (2003). https://doi.org/10.1109/JPROC.2003.813570
  22. S. Giselbrecht, T. Gietzelt, E. Gottwald, C. Trautmann, R. Truckenmuller, K. F. Weibezahn, and A. Welle, 3D tissue culture substrates produced by microthermoforming of pre-processed polymer films, Biomed. Microdevices, 8, 191-199 (2006). https://doi.org/10.1007/s10544-006-8174-8
  23. L. Fan, Q. Yan, Q. Qian, S. Zhang, L. Wu, Y. Peng, S. Jiang, L. Guo, J. Yao, and H. Wu, Laser-induced fast assembly of wettability-finely-tunable superhydrophobic surfaces for lossless droplet transfer, ACS Appl. Mater. Interfaces, 14, 36246-36257 (2022). https://doi.org/10.1021/acsami.2c09410
  24. A. S. Utada, E. Lorenceau, D. R. Link, P. D. Kaplan, H. A. Stone, and D. A. Weitz, Monodisperse double emulsions generated from a microcapillary device, Science, 308, 537-541 (2005). https://doi.org/10.1126/science.1109164
  25. B. H. Kwon, K. G. Lee, T. J. Park, H. Kim, T. J. Lee, S. J. Lee, and D. Y. Jeon, Continuous in situ synthesis of ZnSe/ZnS core/shell quantum dots in a microfluidic reaction system and its application for light-emitting diodes, Small, 8, 3257-3262 (2012). https://doi.org/10.1002/smll.201200773
  26. M. G. Pollack, A. D. Shenderov, and R. B. Fair, Electrowettingbased actuation of droplets for integrated microfluidics, Lab Chip, 2, 96-101 (2002). https://doi.org/10.1039/b110474h
  27. E. Perrone, M. Cesaria, A. Zizzari, M. Bianco, F. Ferrara, L. Raia, V. Guarino, M. Cuscuna, M. Mazzeo, G. Gigli, L. Moroni, and V. Arima, Potential of CO2-laser processing of quartz for fast prototyping of microfluidic reactors and templates for 3D cell assembly over large scale, Mater. Today Bio, 12, 100163 (2021).
  28. S. W. Seo, K. Y Ko, C. S. Lee, and I. H. Kim, CaCO3 biomineralization in microfluidic crystallizer, Korean Chem. Eng. Res., 51, 151-156 (2013). https://doi.org/10.9713/kcer.2013.51.1.151
  29. S. M. Scott and Z. Ali, Fabrication methods for microfluidic devices: An overview, Micromachines, 12, 319 (2021).
  30. D. J. Guckenberger, T. E. D. Groot, A. M. D. Wan, D. J. Beebe, and E. W. K. Young, Micromilling: A method for ultra-rapid prototyping of plastic microfluidic devices, Lab Chip, 15, 2364-2378 (2015). https://doi.org/10.1039/c5lc00234f
  31. T. N. A. Vo and P. C. Chen, Maximizing interfacial bonding strength between PDMS and PMMA substrates for manufacturing hybrid microfluidic devices withstanding extremely high flow rate and high operation pressure, Sens. Actuators A: Phys., 334, 113330 (2022).
  32. L. C. Duarte, I. Pereira, L. I. L. Maciel, B. G. Vaz, and W. K. T. Coltro, 3D printed microfluidic mixer for real-time monitoring of organic reactions by direct infusion mass spectrometry, Anal. Chim. Acta, 1190, 339252 (2022).
  33. Y. Zhu, Q. Chen, L. Shao, Y. Jia, and X. Zhang, Microfluidic immobilized enzyme reactors for continuous biocatalysis, React. Chem. Eng., 5, 9-32 (2020). https://doi.org/10.1039/C9RE00217K
  34. B. Park, S. M. Ghoreishian, Y. Kim, B. J. Park, S.-M. Kang, and Y. S. Huh, Dual-functional micro-adsorbents: Application for simultaneous adsorption of cesium and strontium, Chemosphere, 263, 128266 (2021).
  35. N. Honda, U. Lindberg, P. Andersson, S. Hoffmann, and H. Takei, Simultaneous multiple immunoassays in a compact disc- shaped microfluidic device based on centrifugal force, Clin. Chem., 51, 1955-1961 (2005). https://doi.org/10.1373/clinchem.2005.053348
  36. B. J. Kim, H. S. Jeong, and C. H. Choi, Highly efficient production of monodisperse poly(ethylene glycol) (PEG) hydrogel microparticles by utilizing double emulsion drops with a sacrificial thin oil shell, Korean Chem. Eng. Res., 60, 139-144 (2022).
  37. K. Maeda, H. Onoe, M. Takinoue, and S. Takeuchi, Controlled synthesis of 3D multi-compartmental particles with centrifugebased microdroplet formation from a multi-barrelled capillary, Adv. Mater., 24, 1340-1346 (2012). https://doi.org/10.1002/adma.201102560