DOI QR코드

DOI QR Code

Biodistribution and pharmacokinetic evaluation of Korean Red Ginseng components using radioisotopes in a rat model

  • Sung-Won, Kim (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Byung-Cheol, Han (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Seung-Ho, So (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Chang-Kyun, Han (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Gyo, In (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Chae-Kyu, Park (Laboratory of Efficacy Research, Korea Ginseng Corporation) ;
  • Sun Hee, Hyun (Laboratory of Efficacy Research, Korea Ginseng Corporation)
  • Received : 2021.10.29
  • Accepted : 2022.05.02
  • Published : 2023.01.02

Abstract

Background: Although many studies have evaluated the efficacy and pharmacokinetics of Korean Red Ginseng (KRG) components (Rg1, Rb1, Rg3, Rd, etc.), few have examined the in vivo pharmacokinetics of the radiolabeled components. This study investigated the pharmacokinetics of ginsenosides and their metabolite compound K (CK), 20(s)-protopanaxadiol (PPD), and 20(s)-protopanaxatriol (PPT) using radioisotopes in rat oral administration. Methods: Sprague-Dawley rats were dosed orally once with 10 mg/kg of the tritium(3H) radiolabeled samples, and then the blood was collected from the tail vein after 0.25, 0.5, 1, 1.5, 2, 4, 6, 8, 12, 24, 48, 96, and 168 h. Radioactivity in the organs, feces, urine, and carcass was determined using a liquid scintillation counter (LSC) and a bio-imaging analyzer system (BAS). Results and conclusion: After oral administration, as the 3H-labeled ginsenosides were converted to metabolites, Cmax and half-life increased, and Tmax decreased. Interestingly, Rb1 and CK showed similar values, and after a single oral administration of components, the cumulative excretion ratio of urine and feces was 88.9%-92.4%. Although most KRG components were excreted within 96-168 h of administration, small amounts of components were detected in almost all tissues and mainly distributed to the liver except for the digestive tract when observed through autoradiography. This study demonstrated that KRG components were distributed to various organs in the rats. Further studies could be conducted to prove the bioavailability and transmission of KRG components to confirm the mechanism of KRG efficacy.

Keywords

Acknowledgement

The authors would like to thank Sekisui Medical Co., LTD. (Japan) for their technical assistance on the use of radioisotopes for the study's analysis. This study did not receive funding.

References

  1. Park HJ, Kim DH, Park SJ, Kim JM, Ryu JH. Ginseng in traditional herbal prescriptions. J Ginseng Res 2012;36(3):225-41. https://doi.org/10.5142/jgr.2012.36.3.225.
  2. Lewis R, Wake G, Court JA, Pickering AT, Kim YC, Perry EK. Non-ginsenoside nicotinic activity in ginseng species. Phytother Res 1999;13:59-64. https://doi.org/10.1002/(SICI)1099-1573(199902)13:1<59::AID-PTR423>3.0.CO;2-K.
  3. Tanaka N, Tanaka O, Shibata S. Chemical studies on the oriental plant drugs. XXVIII. Saponins and sapogenins of ginseng; Stereochemistry of sapogenin of ginsenoside Rb1, Rb2 and Rc. Chem Pharm Bull 1972;20:1212-6. https://doi.org/10.1248/cpb.20.1212.
  4. Karikura M, Miyase T, Tanizawa H, Taniyama T, Takino Y. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. VII. Comparison of the decomposition modes of ginsenoside-Rb1 and -Rb2 in the digestive tract of rats. Chem Pharm Bull (Tokyo) 1991;39(9):2357-61. https://doi.org/10.1248/cpb.39.2357.
  5. Christensen LP. Chapter 1 Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2009;55:1-99. https://doi.org/10.1016/S1043-4526(08)00401-4.
  6. Lee SM, Bae B-S, Park H-W, Ahn N-G, Cho B-G, Cho Y-L, Kwak Y-S. Characterization of Korean Red ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:382-91. https://doi.org/10.1016/j.jgr.2015.04.009.
  7. Shin B-K, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005.
  8. Jiao L, Zhang X, Wang M, Li B, Liu Z, Liu S. Chemical and antihyperglycemic activity changes of ginseng pectin induced by heat processing. Carbohydr Polym 2014;114:567-73. https://doi.org/10.1016/j.carbpol.2014.08.018.
  9. Liu HF, Yang JL, Du FF, Gao XM, Ma XT, Huang YH, Xu F, Niu W, Wang FQ, Mao Y, et al. Absorption and disposition of ginsenosides after oral administration of Panax notoginseng extract to rats. Drug Metab Dispos 2009;37:2290-8. https://doi.org/10.1124/dmd.109.029819.
  10. Kim H-K. Pharmacokinetics of ginsenoside Rb1 and its metabolite compound K after oral administration of Korean Red Ginseng extract. J Ginseng Res 2013;37:451e6. https://doi.org/10.5142/jgr.2013.37.451.
  11. Pan C, Huo Y, An X, Singh G, Chen M, Yang Z, Pu J, Li J. Panax notoginseng and its components decreased hypertension via stimulation of endothelial-dependent vessel dilatation. Vasc Pharmacol 2012;56:150-8. https://doi.org/10.1016/j.vph.2011.12.006.
  12. Shi A-W, Gu N, Liu X-M, Wang X, Peng Y-Z. Ginsenoside Rg1 enhances endothelial progenitor cell angiogenic potency and prevents senescence in vitro. J Int Med Res 2011;39:1306e18. https://doi.org/10.1177/147323001103900418.
  13. Wang N, Wan J-B, Chan S-W, Deng Y-H, Yu N, Zhang Q-W, Wang Y-T, Lee SMY. Comparative study on saponin fractions from Panax notoginseng inhibiting inflammation-induced endothelial adhesion molecule expression and monocyte adhesion. Chin Med 2011;6:37. https://doi.org/10.1186/1749-8546-6-37.
  14. Kim T-H, Lee S-M. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48:1516-20. https://doi.org/10.1016/j.fct.2010.03.018.
  15. Wu Y, Lu X, Xiang F-L, Lui EMK, Feng Q. North American ginseng protects the heart from ischemia and reperfusion injury via upregulation of endothelial nitric oxide synthase. Pharmacol Res 2011;64:195-202. https://doi.org/10.1016/j.phrs.2011.05.006.
  16. Mochizuki M, Yoo YC, Matsuzawa K, Sato K, Saiki I, Tono-oka S, Samukawa K, Azuma I. Inhibitory effect of tumor metastasis in mice by saponins, ginsenoside-Rb2, 20(R)- and 20(S)- ginsenoside-Rg3, of red ginseng. Biol Pharm Bull 1995;18:1197-202. https://doi.org/10.1248/bpb.18.1197.
  17. Yang X-D, Yang Y-Y, Ouyang D-S, Yang G-P. A review of biotransformation and pharmacology of ginsenoside compound K. Fitoterapia 2015;100:208-20. https://doi.org/10.1016/j.fitote.2014.11.019.
  18. Zhu GY, Li YW, Tse AK, Hau DK, Leung CH, Yu ZL, Fong WF. 20(S)-Protopanaxadiol, a metabolite of ginsenosides, induced cell apoptosis through endoplasmic reticulum stress in human hepatocarcinoma HepG2 cells. Eur J Pharmacol 2011;668:88-98. https://doi.org/10.1016/j.ejphar.2011.06.008.
  19. Lee W-M, Kim S-D, Kim K-S, Song Y-B, Kwak Y-S, Cho J-Y, Park H-J, Oh J-W, et al. Protopanaxadiol modulates LPS-induced inflammatory activity in murine macrophage RAW264.7 cells. J Ginseng Res 2006;30:181-7. https://doi.org/10.5142/JGR.2006.30.4.181.
  20. Chen XJ, Zhang XJ, Shui YM, Wan JB, Gao JL. Anticancer activities of protopanaxadiol and protopanaxatriol-type ginsenosides and their metabolites. Evid Based Complement Alternat Med 2016:5738694. https://doi.org/10.1155/2016/5738694.
  21. Oh HA, Kim D-E, Choi HJ, Kim NJ, Kim D-H. Anti-stress effects of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol in immobilized mice. Biol Pharm Bull 2015;38:331-5. https://doi.org/10.1248/bpb.b14-00669.
  22. Kim DY, Ro JY, Lee CH. 20(S)-protopanaxatriol inhibits release of inflammatory mediators in immunoglobulin E-mediated mast cell activation. J Ginseng Res 2015;3:189-98. https://doi.org/10.1016/j.jgr.2014.11.001.
  23. Han KL, Jung MH, Sohn JH, Wang JK. Ginsenoside 20Sprotopanaxatriol (PPT) activates peroxisome proliferator-activated receptor g (PPARg) in 3T3-L1 adipocytes. Biol Pharm Bull 2006;29:110-3. https://doi.org/10.1248/bpb.29.110.
  24. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Dispos 2003;31(8):1065-71. https://doi.org/10.1124/dmd.31.8.1065.
  25. Xu QF, Fang XL, Chen DF. Pharmacokinetics and bioavailability of ginsenosides Rb1 and Rg1 from Panax notoginseng in rats. J Ethnopharmacol 2003;84:187-92. https://doi.org/10.1016/s0378-8741(02)00317-3.
  26. Ling Y, Yon L, L C-X. Metabolism and pharmacokinetics of ginsenosides. Asian J Pharmacokinet Pharmacodyn 2006;6:103-20.
  27. Qian T, Cai Z, Wong RNS, Mak NK, Jiang Z-H. In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B Biomed Appl 2005;816:223-32. https://doi.org/10.1016/j.jchromb.2004.11.036.
  28. Han M, Chen J, Chen S, Wang X. Development of a UPLC-ESI-MS/MS assay for 20(S)-protopanaxadiol and pharmacokinetic application of its two formulations in rats. Anal Sci 2010;26:749-53. https://doi.org/10.2116/analsci.26.749.
  29. Kong L-T, Wang Q, Xiao B-X, Liao Y-H, He X-X, Ye L-H, Liu X-M, et al. Different pharmacokinetics of the two structurally similar dammarane sapogenins, protopanaxatriol and protopanaxadiol, in rats. Fitoterapia 2013;86:48-53. https://doi.org/10.1016/j.fitote.2013.01.019.
  30. Kim Y-J, Zhang D, Yang D-C. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv 2015;33:717e35. https://doi.org/10.1016/j.biotechadv.2015.03.001.
  31. Lee CH, Kim J-H. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001.
  32. Yang EJ, Kim TH, Shin KC, Oh DK. Complete conversion of all typical glycosylated protopanaxatriol ginsenosides to aglycon protopanaxatriol by combined bacterial β-glycosidases. Amb Express 2018;8(1):8. https://doi.org/10.1186/s13568-018-0543-1. Published 2018 Jan 24.
  33. Hong B, Chen H, Han J, Xie Q, He J, Bai K, Dong Y, Yi R. A study of 11-[3H]-Tetrodotoxin absorption, distribution, metabolism and excretion (ADME) in adult sprague-dawley rats. Mar Drugs 2017;15:159. https://doi.org/10.3390/md15060159.
  34. Yang L, Yong L, Liu C-X. Metabolism and pharmacokinetics of ginsenosides. Asian J Pharmacokinet Pharmacodyn 2006;6:103-20.
  35. Bae SH, Park JB, Zheng YF, Jang MJ, Kim SO, Kim JY, et al. Pharmacokinetics and tissue distribution of ginsenoside Rh2 and Rg3 epimers after oral administration of BST204, a purified ginseng dry extract, in rats. Xenobiotica 2014;44:1099-107. https://doi.org/10.3109/00498254.2014.929192.
  36. Won H-J, Kim HI, Park T, Kim H, Jo K, Jeon H, et al. Non-clinical pharmacokinetic behavior of ginsenosides. Brain Res Bull 2019;43(3):354-60. https://doi.org/10.1016/j.jgr.2018.06.001.
  37. Hasegawa H, Sung JH, Benno Y. Role of human intestinal Prevotella oris in hydrolyzing ginseng saponins. Planta Med 1997;63:346-440. https://doi.org/10.1055/s-2006-957729.
  38. Park S-E, Na C-S, Yoo S-A, Seo S-H, Son H-S. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J Ginseng Res 2017;41:36-42. https://doi.org/10.1016/j.jgr.2015.12.008.
  39. Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018;42:255-63. https://doi.org/10.1016/j.jgr.2017.04.011.
  40. Ren HC, Sun JG, Wang GJ, A JY, Xie HT, Zha WB, et al. Sensitive determination of 20(S)-protopanaxadiol in rat plasma using HPLC-APCIMS: application of pharmacokinetic study in rats. J Pharm Biomed Anal 2008;48:1476-80. https://doi.org/10.1016/j.jpba.2008.09.045.
  41. Kong LT, Wang Q, Xiao BX, Liao YH, He XX, Ye LH, et al. Different pharmacokinetics of the two structurally similar dammarane sapogenins, protopanaxatriol and protopanaxadiol, in rats. Fitoterapia 2013;86:48-53. https://doi.org/10.1016/j.fitote.2013.01.019.