DOI QR코드

DOI QR Code

Characterization of a conjugated polysuccinimide-carboplatin compound

  • Sun Young Lee (Department of Radiation Oncology, Jeonbuk National University Medical School) ;
  • Chang Hoon Chae (CELLDI Co., Ltd) ;
  • Miklos Zrinyi (Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University) ;
  • Xiangguo Che (Department of Biochemistry & Cell Biology, School of Medicine, Kyungpook National University) ;
  • Je Yong Choi (Department of Biochemistry & Cell Biology, School of Medicine, Kyungpook National University) ;
  • Dong-Hyu Cho (Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital)
  • Received : 2022.05.18
  • Accepted : 2022.11.14
  • Published : 2023.01.01

Abstract

Carboplatin, an advanced anticancer drug with excellent efficacy against ovarian cancer, was developed to alleviate the side effects that often occur with cisplatin and other platinum-based compounds. Our study reports the in vitro characteristics, viability, and activity of cells expressing the inducible nitric oxide synthase (iNOS) gene after carboplatin was conjugated with polysuccinimide (PSI) and administered in combination with other widely used anticancer drugs. PSI, which has promising properties as a drug delivery material, could provide a platform for prolonging carboplatin release, regulating its dosage, and improving its side effects. The iNOS gene has been shown to play an important role in both cancer cell survival and inhibition. Herein, we synthesized a PSI-carboplatin conjugate to create a modified anticancer agent and confirmed its successful conjugation. To ensure its solubility in water, we further modified the structure of the PSI-carboplatin conjugate with 2-aminoethanol groups. To validate its biological characteristics, the ovarian cancer cell line SKOV-3 and normal ovarian Chinese hamster ovary cells were treated with the PSI-carboplatin conjugate alone and in combination with paclitaxel and topotecan, both of which are used in conventional chemotherapy. Notably, PSI-carboplatin conjugation can be used to predict changes in the genes involved in cancer growth and inhibition. In conclusion, combination treatment with the newly synthesized polymer-carboplatin conjugate and paclitaxel displayed anticancer activity against ovarian cancer cells but was not toxic to normal ovarian cancer cells, resulting in the development of an effective candidate anticancer drug without severe side effects.

Keywords

Acknowledgement

This paper was supported by the Fund of the Biomedical Research Institute, Jeonbuk National University Hospital, the Research Base Construction Fund Support Program funded by Jeonbuk National University in 2021, and research funds for newly appointed professors of Jeonbuk National University in 2020.

References

  1. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017;14:9-32.  https://doi.org/10.20892/j.issn.2095-3941.2016.0084
  2. Kujawa KA, Lisowska KM. [Ovarian cancer--from biology to clinic]. Postepy Hig Med Dosw (Online). 2015;69:1275-1290. Polish.  https://doi.org/10.5604/17322693.1184451
  3. Webb PM, Jordan SJ. Epidemiology of epithelial ovarian cancer. Best Pract Res Clin Obstet Gynaecol. 2017;41:3-14.  https://doi.org/10.1016/j.bpobgyn.2016.08.006
  4. Karam A, Ledermann JA, Kim JW, Sehouli J, Lu K, Gourley C, Katsumata N, Burger RA, Nam BH, Bacon M, Ng C, Pfisterer J, Bekkers RLM, Casado Herraez A, Redondo A, Fujiwara H, Gleeson N, Rosengarten O, Scambia G, Zhu J, et al. Fifth Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup: first-line interventions. Ann Oncol. 2017;28:711-717.  https://doi.org/10.1093/annonc/mdx011
  5. Potara M, Nagy-Simon T, Craciun AM, Suarasan S, Licarete E, Imre-Lucaci F, Astilean S. Carboplatin-loaded, Raman-encoded, chitosan-coated silver nanotriangles as multimodal traceable nanotherapeutic delivery systems and pH reporters inside human ovarian cancer cells. ACS Appl Mater Interfaces. 2017;9:32565-32576.  https://doi.org/10.1021/acsami.7b10075
  6. Wang Y, Wang L, Chen G, Gong S. Carboplatin-complexed and cRGD-conjugated unimolecular nanoparticles for targeted ovarian cancer therapy. Macromol Biosci. 2017;17:1600292.  https://doi.org/10.1002/mabi.201600292
  7. Coleman RL. Emerging role of topotecan in front-line treatment of carcinoma of the ovary. Oncologist. 2002;7 Suppl 5:46-55.  https://doi.org/10.1634/theoncologist.7-suppl_5-46
  8. Zhang H, Jia L, Xu Y, Zhou XC, Kong B, Li D. Topotecan plus carboplatin and paclitaxel in first-line treatment of advanced ovarian cancer: a meta-analysis of randomized controlled trials. J Chemother. 2012;24:67-73.  https://doi.org/10.1179/1120009X12Z.0000000002
  9. Skarlos DV, Aravantinos G, Kosmidis P, Athanassiadis A, Stathopoulos GP, Pavlidis N, Bafaloukos D, Karphathios S, Papakostas P, Bamia C, Fountzilas G. Paclitaxel with carboplatin versus paclitaxel with carboplatin alternating with cisplatin as first-line chemotherapy in advanced epithelial ovarian cancer: preliminary results of a Hellenic Cooperative Oncology Group study. Semin Oncol. 1997;24(5 Suppl 15):S15-57-S15-61. 
  10. Han ES, Wen W, Dellinger TH, Wu J, Lu SA, Jove R, Yim JH. Ruxolitinib synergistically enhances the anti-tumor activity of paclitaxel in human ovarian cancer. Oncotarget. 2018;9:24304-24319.  https://doi.org/10.18632/oncotarget.24368
  11. Ho GY, Woodward N, Coward JI. Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit Rev Oncol Hematol. 2016;102:37-46.  https://doi.org/10.1016/j.critrevonc.2016.03.014
  12. Ledermann JA. Front-line therapy of advanced ovarian cancer: new approaches. Ann Oncol. 2017;28(suppl_8):viii46-viii50.  https://doi.org/10.1093/annonc/mdx452
  13. Shenoi RA, Lai BF, Imran ul-haq M, Brooks DE, Kizhakkedathu JN. Biodegradable polyglycerols with randomly distributed ketal groups as multi-functional drug delivery systems. Biomaterials. 2013;34:6068-6081.  https://doi.org/10.1016/j.biomaterials.2013.04.043
  14. Joye IJ, McClements DJ. Biopolymer-based delivery systems: challenges and opportunities. Curr Top Med Chem. 2016;16:1026-1039.  https://doi.org/10.2174/1568026615666150825143130
  15. Tibbitt MW, Dahlman JE, Langer R. Emerging frontiers in drug delivery. J Am Chem Soc. 2016;138:704-717.  https://doi.org/10.1021/jacs.5b09974
  16. Varga Z, Molnar K, Torma V, Zrinyi M. Kinetics of volume change of poly(succinimide) gels during hydrolysis and swelling. Phys Chem Chem Phys. 2010;12:12670-12675.  https://doi.org/10.1039/c0cp00527d
  17. Sadeghi M, Hemmati S, Hamishehkar H. Synthesis of a novel superdisintegrant by starch derivatization with polysuccinimide and its application for the development of Ondansetron fast dissolving tablet. Drug Dev Ind Pharm. 2016;42:769-775.  https://doi.org/10.3109/03639045.2015.1075029
  18. Juriga D, Laszlo I, Ludanyi K, Klebovich I, Chae CH, Zrinyi M. Kinetics of dopamine release from poly(aspartamide)-based prodrugs. Acta Biomater. 2018;76:225-238.  https://doi.org/10.1016/j.actbio.2018.06.030
  19. Yendluri R, Lvov Y, de Villiers MM, Vinokurov V, Naumenko E, Tarasova E, Fakhrullin R. Paclitaxel encapsulated in halloysite clay nanotubes for intestinal and intracellular delivery. J Pharm Sci. 2017;106:3131-3139.  https://doi.org/10.1016/j.xphs.2017.05.034
  20. Doppalapudi S, Jain A, Domb AJ, Khan W. Biodegradable polymers for targeted delivery of anti-cancer drugs. Expert Opin Drug Deliv. 2016;13:891-909.  https://doi.org/10.1517/17425247.2016.1156671
  21. Nicolas J, Couvreur P. [Polymer nanoparticles for the delivery of anticancer drug]. Med Sci (Paris). 2017;33:11-17. French.  https://doi.org/10.1051/medsci/20173301003
  22. Velazco-de-la-Garza J, Averous L, Sosa-Santillan GdJ, Pollet E, Zugasti-Cruz A, Sierra-Rivera CA, Perez-Aguilar NV, Oyervides-Munoz E. Biological properties of novel polysuccinimide derivatives synthesized via quaternary ammonium grafting. Eur Polym J. 2020;131:109705.  https://doi.org/10.1016/j.eurpolymj.2020.109705
  23. Jenkins DC, Charles IG, Thomsen LL, Moss DW, Holmes LS, Baylis SA, Rhodes P, Westmore K, Emson PC, Moncada S. Roles of nitric oxide in tumor growth. Proc Natl Acad Sci U S A. 1995;92:4392-4396.  https://doi.org/10.1073/pnas.92.10.4392
  24. Xie K, Huang S. Contribution of nitric oxide-mediated apoptosis to cancer metastasis inefficiency. Free Radic Biol Med. 2003;34:969-986.  https://doi.org/10.1016/S0891-5849(02)01364-3
  25. Brune B. Nitric oxide: NO apoptosis or turning it ON? Cell Death Differ. 2003;10:864-869.  https://doi.org/10.1038/sj.cdd.4401261
  26. Forrester K, Ambs S, Lupold SE, Kapust RB, Spillare EA, Weinberg WC, Felley-Bosco E, Wang XW, Geller DA, Tzeng E, Billiar TR, Harris CC. Nitric oxide-induced p53 accumulation and regulation of inducible nitric oxide synthase expression by wild-type p53. Proc Natl Acad Sci U S A. 1996;93:2442-2447.  https://doi.org/10.1073/pnas.93.6.2442
  27. Rao CV. Nitric oxide signaling in colon cancer chemoprevention. Mutat Res. 2004;555:107-119.  https://doi.org/10.1016/j.mrfmmm.2004.05.022
  28. Chazotte-Aubert L, Hainaut P, Ohshima H. Nitric oxide nitrates tyrosine residues of tumor-suppressor p53 protein in MCF-7 cells. Biochem Biophys Res Commun. 2000;267:609-613.  https://doi.org/10.1006/bbrc.1999.2003
  29. Li J, Billiar TR, Talanian RV, Kim YM. Nitric oxide reversibly inhibits seven members of the caspase family via S-nitrosylation. Biochem Biophys Res Commun. 1997;240:419-424.  https://doi.org/10.1006/bbrc.1997.7672
  30. Messmer UK, Brune B. Nitric oxide-induced apoptosis: p53-dependent and p53-independent signalling pathways. Biochem J. 1996;319(Pt 1):299-305.  https://doi.org/10.1042/bj3190299
  31. Kielbik M, Szulc-Kielbik I, Klink M. The potential role of iNOS in ovarian cancer progression and chemoresistance. Int J Mol Sci. 2019;20:1751.  https://doi.org/10.3390/ijms20071751
  32. Morand S, Devanaboyina M, Staats H, Stanbery L, Nemunaitis J. Ovarian cancer immunotherapy and personalized medicine. Int J Mol Sci. 2021;22:6532.  https://doi.org/10.3390/ijms22126532
  33. Singh V, Kesharwani P. Dendrimer as a promising nanocarrier for the delivery of doxorubicin as an anticancer therapeutics. J Biomater Sci Polym Ed. 2021;32:1882-1909.  https://doi.org/10.1080/09205063.2021.1938859
  34. Sun H, Yarovoy I, Capeling M, Cheng C. Polymers in the codelivery of siRNA and anticancer drugs for the treatment of drugresistant cancers. Top Curr Chem (Cham). 2017;375:24.  https://doi.org/10.1007/s41061-017-0113-z
  35. Sanyakamdhorn S, Agudelo D, Tajmir-Riahi HA. Review on the targeted conjugation of anticancer drugs doxorubicin and tamoxifen with synthetic polymers for drug delivery. J Biomol Struct Dyn. 2017;35:2497-2508. https://doi.org/10.1080/07391102.2016.1222971