DOI QR코드

DOI QR Code

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang (Department of Pharmacy, Fudan University Shanghai Cancer Center) ;
  • Yang Zhang (Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center) ;
  • Qiong Du (Department of Pharmacy, Fudan University Shanghai Cancer Center) ;
  • Xinjie Zhao (Department of Pharmacy, Fudan University Shanghai Cancer Center) ;
  • Wei Wang (Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center) ;
  • Qing Zhai (Department of Pharmacy, Fudan University Shanghai Cancer Center) ;
  • Ming Xiang (Department of Pharmacy, Fudan University Shanghai Cancer Center)
  • Received : 2022.06.08
  • Accepted : 2022.09.08
  • Published : 2023.01.01

Abstract

Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

Keywords

Acknowledgement

Thanks to the contribution of Minhang Branch of Fudan University Shanghai Cancer Center and Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center for their support.

References

  1. Kim YS, Chu Y, Han L, Li M, Li Z, LaVinka PC, Sun S, Tang Z, Park K, Caterina MJ, Ren K, Dubner R, Wei F, Dong X. Central terminal sensitization of TRPV1 by descending serotonergic facilitation modulates chronic pain. Neuron. 2014;81:873-887. https://doi.org/10.1016/j.neuron.2013.12.011
  2. Majewski L, Kuznicki J. SOCE in neurons: signaling or just refilling? Biochim Biophys Acta. 2015;1853:1940-1952. https://doi.org/10.1016/j.bbamcr.2015.01.019
  3. Michaelis M, Nieswandt B, Stegner D, Eilers J, Kraft R. STIM1, STIM2, and Orai1 regulate store-operated calcium entry and purinergic activation of microglia. Glia. 2015;63:652-663. https://doi.org/10.1002/glia.22775
  4. Park YJ, Yoo SA, Kim M, Kim WU. The role of calcium-calcineurinNFAT signaling pathway in health and autoimmune diseases. Front Immunol. 2020;11:195. https://doi.org/10.3389/fimmu.2020.00195
  5. Secondo A, Bagetta G, Amantea D. On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases. Front Mol Neurosci. 2018;11:87. https://doi.org/10.3389/fnmol.2018.00087
  6. Moccia F, Zuccolo E, Soda T, Tanzi F, Guerra G, Mapelli L, Lodola F, D'Angelo E. Stim and Orai proteins in neuronal Ca2+ signaling and excitability. Front Cell Neurosci. 2015;9:153. https://doi.org/10.3389/fncel.2015.00153
  7. Tiscione SA, Vivas O, Ginsburg KS, Bers DM, Ory DS, Santana LF, Dixon RE, Dickson EJ. Disease-associated mutations in NiemannPick type C1 alter ER calcium signaling and neuronal plasticity. J Cell Biol. 2019;218:4141-4156. https://doi.org/10.1083/jcb.201903018
  8. Mizuma A, Kim JY, Kacimi R, Stauderman K, Dunn M, Hebbar S, Yenari MA. Microglial calcium release-activated calcium channel inhibition improves outcome from experimental traumatic brain injury and microglia-induced neuronal death. J Neurotrauma. 2019;36:996-1007. https://doi.org/10.1089/neu.2018.5856
  9. Gruszczynska-Biegala J, Strucinska K, Maciag F, Majewski L, Sladowska M, Kuznicki J. STIM protein-NMDA2 receptor interaction decreases NMDA-dependent calcium levels in cortical neurons. Cells. 2020;9:160. https://doi.org/10.3390/cells9010160
  10. Shirahata M, Tang WY, Shin MK, Polotsky VY. Is the carotid body a metabolic monitor? Adv Exp Med Biol. 2015;860:153-159. https://doi.org/10.1007/978-3-319-18440-1_17
  11. Liu Z, Ma C, Zhao W, Zhang Q, Xu R, Zhang H, Lei H, Xu S. High glucose enhances isoflurane-induced neurotoxicity by regulating TRPC-dependent calcium influx. Neurochem Res. 2017;42:1165-1178. https://doi.org/10.1007/s11064-016-2152-1
  12. Gao X, Xia J, Munoz FM, Manners MT, Pan R, Meucci O, Dai Y, Hu H. STIMs and Orai1 regulate cytokine production in spinal astrocytes. J Neuroinflammation. 2016;13:126. https://doi.org/10.1186/s12974-016-0594-7
  13. Wei D, Mei Y, Xia J, Hu H. Orai1 and Orai3 mediate store-operated calcium entry contributing to neuronal excitability in dorsal root ganglion neurons. Front Cell Neurosci. 2017;11:400. https://doi.org/10.3389/fncel.2017.00400
  14. Xia J, Pan R, Gao X, Meucci O, Hu H. Native store-operated calcium channels are functionally expressed in mouse spinal cord dorsal horn neurons and regulate resting calcium homeostasis. J Physiol. 2014;592:3443-3461. https://doi.org/10.1113/jphysiol.2014.275065
  15. Kostyuk E, Voitenko N, Kruglikov I, Shmigol A, Shishkin V, Efimov A, Kostyuk P. Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia. 2001;44:1302-1309. https://doi.org/10.1007/s001250100642
  16. Wei H, Zhao W, Wang YX, Pertovaara A. Pain-related behavior following REM sleep deprivation in the rat: influence of peripheral nerve injury, spinal glutamatergic receptors and nitric oxide. Brain Res. 2007;1148:105-112. https://doi.org/10.1016/j.brainres.2007.02.040
  17. Zhang XY, Peng SY, Shen LP, Zhuang QX, Li B, Xie ST, Li QX, Shi MR, Ma TY, Zhang Q, Wang JJ, Zhu JN. Targeting presynaptic H3 heteroreceptor in nucleus accumbens to improve anxiety and obsessive-compulsive-like behaviors. Proc Natl Acad Sci U S A. 2020;117:32155-32164. https://doi.org/10.1073/pnas.2008456117
  18. Ahmad KA, Shoaib RM, Ahsan MZ, Deng MY, Ma L, Apryani E, Li XY, Wang YX. Microglial IL-10 and β-endorphin expression mediates gabapentinoids antineuropathic pain. Brain Behav Immun. 2021;95:344-361. https://doi.org/10.1016/j.bbi.2021.04.007
  19. He X, Li S, Liu B, Susperreguy S, Formoso K, Yao J, Kang J, Shi A, Birnbaumer L, Liao Y. Major contribution of the 3/6/7 class of TRPC channels to myocardial ischemia/reperfusion and cellular hypoxia/ reoxygenation injuries. Proc Natl Acad Sci U S A. 2017;114:E4582-E4591. https://doi.org/10.1073/pnas.1621384114
  20. Chopra S, Giovanelli P, Alvarado-Vazquez PA, Alonso S, Song M, Sandoval TA, Chae CS, Tan C, Fonseca MM, Gutierrez S, Jimenez L, Subbaramaiah K, Iwawaki T, Kingsley PJ, Marnett LJ, Kossenkov AV, Crespo MS, Dannenberg AJ, Glimcher LH, Romero-Sandoval EA, et al. IRE1α-XBP1 signaling in leukocytes controls prostaglandin biosynthesis and pain. Science. 2019;365:eaau6499. https://doi.org/10.1126/science.aau6499
  21. Liu Y, Wang S, Wang Z, Ding M, Li X, Guo J, Han G, Zhao P. Dexmedetomidine alleviated endoplasmic reticulum stress via inducing ER-phagy in the spinal cord of neuropathic pain model. Front Neurosci. 2020;14:90. https://doi.org/10.3389/fnins.2020.00090
  22. Bandelow B. Generalized anxiety disorder and pain. Mod Trends Pharmacopsychiatry. 2015;30:153-165. https://doi.org/10.1159/000435939
  23. Seidl O, Frick E. [Studies on the psychodynamics of Chronic Orofacial Pain Disorder]. Z Psychosom Med Psychother. 2021;67:416-434. German. https://doi.org/10.13109/zptm.2021.67.4.416
  24. Yongjun Z, Tingjie Z, Xiaoqiu Y, Zhiying F, Feng Q, Guangke X, Jinfeng L, Fachuan N, Xiaohong J, Yanqing L. A survey of chronic pain in China. Libyan J Med. 2020;15:1730550. https://doi.org/10.1080/19932820.2020.1730550
  25. Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: the calcium connection. Mol Pain. 2020;16:1744806920946889. https://doi.org/10.1177/1744806920946889
  26. Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 2014;8:143-151. https://doi.org/10.1097/SPC.0000000000000055
  27. Ma L, Peng S, Wei J, Zhao M, Ahmad KA, Chen J, Wang YX. Spinal microglial β-endorphin signaling mediates IL-10 and exenatideinduced inhibition of synaptic plasticity in neuropathic pain. CNS Neurosci Ther. 2021;27:1157-1172. https://doi.org/10.1111/cns.13694
  28. Nanou E, Catterall WA. Calcium channels, synaptic plasticity, and neuropsychiatric disease. Neuron. 2018;98:466-481. https://doi.org/10.1016/j.neuron.2018.03.017
  29. Schmaul S, Hanuscheck N, Bittner S. Astrocytic potassium and calcium channels as integrators of the inflammatory and ischemic CNS microenvironment. Biol Chem. 2021;402:1519-1530. https://doi.org/10.1515/hsz-2021-0256
  30. Tratnjek L, Zivin M, Glavan G. Synaptotagmin 7 and SYNCRIP proteins are ubiquitously expressed in the rat brain and co-localize in Purkinje neurons. J Chem Neuroanat. 2017;79:12-21. https://doi.org/10.1016/j.jchemneu.2016.10.002
  31. Kohno T, Kumamoto E, Higashi H, Shimoji K, Yoshimura M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol. 1999;518(Pt 3):803-813. https://doi.org/10.1111/j.1469-7793.1999.0803p.x
  32. van Vliet AR, Giordano F, Gerlo S, Segura I, Van Eygen S, Molenberghs G, Rocha S, Houcine A, Derua R, Verfaillie T, Vangindertael J, De Keersmaecker H, Waelkens E, Tavernier J, Hofkens J, Annaert W, Carmeliet P, Samali A, Mizuno H, Agostinis P. The ER stress sensor PERK coordinates ER-plasma membrane contact site formation through interaction with Filamin-A and F-actin remodeling. Mol Cell. 2017;65:885-899.e6. https://doi.org/10.1016/j.molcel.2017.01.020
  33. Gorudko IV, Sokolov AV, Shamova EV, Grudinina NA, Drozd ES, Shishlo LM, Grigorieva DV, Bushuk SB, Bushuk BA, Chizhik SA, Cherenkevich SN, Vasilyev VB, Panasenko OM. Myeloperoxidase modulates human platelet aggregation via actin cytoskeleton reorganization and store-operated calcium entry. Biol Open. 2013;2:916-923. https://doi.org/10.1242/bio.20135314
  34. Pelucchi S, Stringhi R, Marcello E. Dendritic spines in Alzheimer's disease: how the actin cytoskeleton contributes to synaptic failure. Int J Mol Sci. 2020;21:908. https://doi.org/10.3390/ijms21030908
  35. Katanosaka K, Banik RK, Giron R, Higashi T, Tominaga M, Mizumura K. Contribution of TRPV1 to the bradykinin-evoked nociceptive behavior and excitation of cutaneous sensory neurons. Neurosci Res. 2008;62:168-175. https://doi.org/10.1016/j.neures.2008.08.004
  36. Park CK, Lu N, Xu ZZ, Liu T, Serhan CN, Ji RR. Resolving TRPV1- and TNF-α-mediated spinal cord synaptic plasticity and inflammatory pain with neuroprotectin D1. J Neurosci. 2011;31:15072-15085. https://doi.org/10.1523/JNEUROSCI.2443-11.2011
  37. Weber JP, Toft-Bertelsen TL, Mohrmann R, Delgado-Martinez I, Sorensen JB. Synaptotagmin-7 is an asynchronous calcium sensor for synaptic transmission in neurons expressing SNAP-23. PLoS One. 2014;9:e114033. https://doi.org/10.1371/journal.pone.0114033
  38. Wang QW, Lu SY, Liu YN, Chen Y, Wei H, Shen W, Chen YF, Fu CL, Wang YH, Dai A, Huang X, Gage FH, Xu Q, Yao J. Synaptotagmin-7 deficiency induces mania-like behavioral abnormalities through attenuating GluN2B activity. Proc Natl Acad Sci U S A. 2020;117:31438-31447. Erratum in: Proc Natl Acad Sci U S A. 2021;118:e2111933118. https://doi.org/10.1073/pnas.2111933118
  39. Chen J, Li L, Chen SR, Chen H, Xie JD, Sirrieh RE, MacLean DM, Zhang Y, Zhou MH, Jayaraman V, Pan HL. The α2δ-1-NMDA receptor complex is critically involved in neuropathic pain development and gabapentin therapeutic actions. Cell Rep. 2018;22:2307- 2321. Erratum in: Cell Rep. 2022;38:110308. https://doi.org/10.1016/j.celrep.2022.110308
  40. Binning W, Hogan-Cann AE, Yae Sakae D, Maksoud M, Ostapchenko V, Al-Onaizi M, Matovic S, Lu WY, Prado MAM, Inoue W, Prado VF. Chronic hM3Dq signaling in microglia ameliorates neuroinflammation in male mice. Brain Behav Immun. 2020;88:791-801. https://doi.org/10.1016/j.bbi.2020.05.041
  41. Hong JS, Cho JH, Choi IS, Lee MG, Jang IS. Pregnenolone sulfate modulates glycinergic transmission in rat medullary dorsal horn neurons. Eur J Pharmacol. 2013;712:30-38. https://doi.org/10.1016/j.ejphar.2013.04.039
  42. Gao R, Gao X, Xia J, Tian Y, Barrett JE, Dai Y, Hu H. Potent analgesic effects of a store-operated calcium channel inhibitor. Pain. 2013;154:2034-2044. https://doi.org/10.1016/j.pain.2013.06.017
  43. Jin H, Sun YT, Guo GQ, Chen DL, Li YJ, Xiao GP, Li XN. Spinal TRPC6 channels contributes to morphine-induced antinociceptive tolerance and hyperalgesia in rats. Neurosci Lett. 2017;639:138-145 https://doi.org/10.1016/j.neulet.2016.12.062
  44. Hsieh MC, Ho YC, Lai CY, Chou D, Chen GD, Lin TB, Peng HY. Spinal TNF-α impedes Fbxo45-dependent Munc13-1 ubiquitination to mediate neuropathic allodynia in rats. Cell Death Dis. 2018;9:811. https://doi.org/10.1038/s41419-018-0859-4
  45. Yu T, Zhang X, Shi H, Tian J, Sun L, Hu X, Cui W, Du D. P2Y12 regulates microglia activation and excitatory synaptic transmission in spinal lamina II neurons during neuropathic pain in rodents. Cell Death Dis. 2019;10:165. https://doi.org/10.1038/s41419-019-1425-4
  46. Zhang SB, Lin SY, Liu M, Liu CC, Ding HH, Sun Y, Ma C, Guo RX, Lv YY, Wu SL, Xu T, Xin WJ. CircAnks1a in the spinal cord regulates hypersensitivity in a rodent model of neuropathic pain. Nat Commun. 2019;10:4119. https://doi.org/10.1038/s41467-019-12049-0
  47. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267-284. https://doi.org/10.1016/j.cell.2009.09.028
  48. Hogea A, Shah S, Jones F, Carver CM, Hao H, Liang C, Huang D, Du X, Gamper N. Junctophilin-4 facilitates inflammatory signalling at plasma membrane-endoplasmic reticulum junctions in sensory neurons. J Physiol. 2021;599:2103-2123. https://doi.org/10.1113/JP281331
  49. Alkhani H, Ase AR, Grant R, O'Donnell D, Groschner K, Seguela P. Contribution of TRPC3 to store-operated calcium entry and inflammatory transductions in primary nociceptors. Mol Pain. 2014;10:43. https://doi.org/10.1186/1744-8069-10-43
  50. Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. ORAI2 down-regulation potentiates SOCE and decreases Aβ42 accumulation in human neuroglioma cells. Int J Mol Sci. 2020;21:5288. https://doi.org/10.3390/ijms21155288
  51. Muller MS, Fox R, Schousboe A, Waagepetersen HS, Bak LK. Astrocyte glycogenolysis is triggered by store-operated calcium entry and provides metabolic energy for cellular calcium homeostasis. Glia. 2014;62:526-534. https://doi.org/10.1002/glia.22623
  52. Moreno C, Sampieri A, Vivas O, Pena-Segura C, Vaca L. STIM1 and Orai1 mediate thrombin-induced Ca2+ influx in rat cortical astrocytes. Cell Calcium. 2012;52:457-467. https://doi.org/10.1016/j.ceca.2012.08.004
  53. Arakawa N, Sakaue M, Yokoyama I, Hashimoto H, Koyama Y, Baba A, Matsuda T. KB-R7943 inhibits store-operated Ca2+ entry in cultured neurons and astrocytes. Biochem Biophys Res Commun. 2000;279:354-357. https://doi.org/10.1006/bbrc.2000.3968
  54. Steinbeck JA, Henke N, Opatz J, Gruszczynska-Biegala J, Schneider L, Theiss S, Hamacher N, Steinfarz B, Golz S, Brustle O, Kuznicki J, Methner A. Store-operated calcium entry modulates neuronal network activity in a model of chronic epilepsy. Exp Neurol. 2011;232:185-194. https://doi.org/10.1016/j.expneurol.2011.08.022
  55. Skibinska-Kijek A, Wisniewska MB, Gruszczynska-Biegala J, Methner A, Kuznicki J. Immunolocalization of STIM1 in the mouse brain. Acta Neurobiol Exp (Wars). 2009;69:413-428. Erratum in: Acta Neurobiol Exp (Wars). 2010;70:115.
  56. Hartmann J, Karl RM, Alexander RP, Adelsberger H, Brill MS, Ruhlmann C, Ansel A, Sakimura K, Baba Y, Kurosaki T, Misgeld T, Konnerth A. STIM1 controls neuronal Ca2+ signaling, mGluR1- dependent synaptic transmission, and cerebellar motor behavior. Neuron. 2014;82:635-644. https://doi.org/10.1016/j.neuron.2014.03.027
  57. Briggs MD, Dennis EP, Dietmar HF, Pirog KA. New developments in chondrocyte ER stress and related diseases. F1000Res. 2020;9:F1000 Faculty Rev-290. https://doi.org/10.12688/f1000research.22275.1
  58. Zhang IX, Ren J, Vadrevu S, Raghavan M, Satin LS. ER stress increases store-operated Ca2+ entry (SOCE) and augments basal insulin secretion in pancreatic beta cells. J Biol Chem. 2020;295:5685-5700. https://doi.org/10.1074/jbc.ra120.012721
  59. O'Brien PD, Hinder LM, Sakowski SA, Feldman EL. ER stress in diabetic peripheral neuropathy: a new therapeutic target. Antioxid Redox Signal. 2014;21:621-633. https://doi.org/10.1089/ars.2013.5807
  60. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, Adamopoulos IE, Adeli K, Adolph TE, Adornetto A, Aflaki E, Agam G, Agarwal A, Aggarwal BB, Agnello M, Agostinis P, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy. 2021;17:1-382. https://doi.org/10.1080/15548627.2020.1797280