DOI QR코드

DOI QR Code

Antioxidation and anti-inflammatory effects of gamma-irradiated silk sericin and fibroin in H2O2-induced HaCaT Cell

  • Ji-Hye Choi (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University) ;
  • Sangmin Lee (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University) ;
  • Hye-Ju Han (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University) ;
  • Jungkee Kwon (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Jeonbuk National University)
  • Received : 2022.08.31
  • Accepted : 2022.10.25
  • Published : 2023.01.01

Abstract

Oxidative stress in skin cells can induce the formation of reactive oxygen species (ROS), which are critical for pathogenic processes such as immunosuppression, inflammation, and skin aging. In this study, we confirmed improvements from gamma-irradiated silk sericin (I-sericin) and gamma-irradiated silk fibroin (I-fibroin) to skin cells damaged by oxidative stress. We found that I-sericin and I-fibroin effectively attenuated oxidative stress-induced ROS generation and decreased oxidative stress-induced inflammatory factors COX-2, iNOS, tumor necrosis factor-α, and interleukin-1β compared to the use of non-irradiated sericin or fibroin. I-sericin and Ifibroin effects were balanced by competition with skin regenerative protein factors reacting to oxidative stress. Taken together, our results indicated that, compared to non-irradiated sericin or fibroin, I-sericin, and I-fibroin had anti-oxidation and antiinflammation activity and protective effects against skin cell damage from oxidative stress. Therefore, gamma-irradiation may be useful in the development of cosmetics to maintain skin health.

Keywords

Acknowledgement

This research was supported by "Research Base Construction Fund Support Program" funded by Jeonbuk National University in 2020.

References

  1. Fisher GJ, Kang S, Varani J, Bata-Csorgo Z, Wan Y, Datta S, Voorhees JJ. Mechanisms of photoaging and chronological skin aging. Arch Dermatol. 2002;138:1462-1470. https://doi.org/10.1001/archderm.138.11.1462
  2. Sies H. Oxidative stress: oxidants and antioxidants. Exp Physiol. 1997;82:291-295. https://doi.org/10.1113/expphysiol.1997.sp004024
  3. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What's new. J Eur Acad Dermatol Venereol. 2003;17:663-669. https://doi.org/10.1046/j.1468-3083.2003.00751.x
  4. Svobodova A, Walterova D, Psotova J. Influence of silymarin and its flavonolignans on H2O2-induced oxidative stress in human keratinocytes and mouse fibroblasts. Burns. 2006;32:973-979. https://doi.org/10.1016/j.burns.2006.04.004
  5. Li BC, Zhang SQ, Dan WB, Chen YQ, Cao P. Expression in Escherichia coli and purification of bioactive antibacterial peptide ABPCM4 from the Chinese silk worm, Bombyx mori. Biotechnol Lett. 2007;29:1031-1036. https://doi.org/10.1007/s10529-007-9351-4
  6. Manosroi A, Boonpisuttinant K, Winitchai S, Manosroi W, Manosroi J. Free radical scavenging and tyrosinase inhibition activity of oils and sericin extracted from Thai native silkworms (Bombyx mori). Pharm Biol. 2010;48:855-860. https://doi.org/10.3109/13880200903300212
  7. Martinez-Mora C, Mrowiec A, Garcia-Vizcaino EM, Alcaraz A, Cenis JL, Nicolas FJ. Fibroin and sericin from Bombyx mori silk stimulate cell migration through upregulation and phosphorylation of c-Jun. PLoS One. 2012;7:e42271. https://doi.org/10.1371/journal.pone.0042271
  8. Vepari C, Kaplan DL. Silk as a biomaterial. Prog Polym Sci. 2007;32:991-1007. https://doi.org/10.1016/j.progpolymsci.2007.05.013
  9. Meinel L, Kaplan DL. Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Deliv Rev. 2012;64:1111-1122. https://doi.org/10.1016/j.addr.2012.03.016
  10. Zhang YQ. Applications of natural silk protein sericin in biomaterials. Biotechnol Adv. 2002;20:91-100. https://doi.org/10.1016/S0734-9750(02)00003-4
  11. Aramwit P, Towiwat P, Srichana T. Anti-inflammatory potential of silk sericin. Nat Prod Commun. 2013;8:501-504. https://doi.org/10.1177/1934578X1300800424
  12. Dash R, Acharya C, Bindu PC, Kundu SC. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Rep. 2008;41:236-241. https://doi.org/10.5483/BMBRep.2008.41.3.236
  13. Dash R, Mandal M, Ghosh SK, Kundu SC. Silk sericin protein of tropical tasar silkworm inhibits UVB-induced apoptosis in human skin keratinocytes. Mol Cell Biochem. 2008;311:111-119. https://doi.org/10.1007/s11010-008-9702-z
  14. Leskovac A, Joksic G, Jankovic T, Savikin K, Menkovic N. Radioprotective properties of the phytochemically characterized extracts of Crataegus monogyna, Cornus mas and Gentianella austriaca on human lymphocytes in vitro. Planta Med. 2007;73:1169-1175. https://doi.org/10.1055/s-2007-981586
  15. Harrison K, Were LM. Effect of gamma irradiation on total phenolic content yield and antioxidant capacity of Almond skin extracts. Food Chem. 2007;102:932-937. https://doi.org/10.1016/j.foodchem.2006.06.034
  16. Mali AB, Khedkar K, Lele SS. Effect of gamma irradiation on total phenolic content and in vitro antioxidant activity of pomegranate (Punica granatum L.) peels. Food Nutr Sci. 2011;2:428-433. https://doi.org/10.4236/fns.2011.25060
  17. Pricaz M, U?? AC. Gamma radiation for improvements in food industry, environmental quality and healthcare. Rom J Biophys. 2015;2:143-162.
  18. Song IB, Han HJ, Kwon J. Immune-enhancing effects of gammairradiated sericin. Food Sci Biotechnol. 2020;29:969-976. https://doi.org/10.1007/s10068-020-00734-6
  19. Furuno K, Akasako T, Sugihara N. The contribution of the pyrogallol moiety to the superoxide radical scavenging activity of flavonoids. Biol Pharm Bull. 2002;25:19-23. https://doi.org/10.1248/bpb.25.19
  20. Bae JY, Choi JS, Choi YJ, Shin SY, Kang SW, Han SJ, Kang YH. (-) Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: involvement of mitogen-activated protein kinase. Food Chem Toxicol. 2008;46:1298-1307. https://doi.org/10.1016/j.fct.2007.09.112
  21. Talwar HS, Griffiths CE, Fisher GJ, Hamilton TA, Voorhees JJ. Reduced type I and type III procollagens in photodamaged adult human skin. J Invest Dermatol. 1995;105:285-290. https://doi.org/10.1111/1523-1747.ep12318471
  22. Lu CY, Lee HC, Fahn HJ, Wei YH. Oxidative damage elicited by imbalance of free radical scavenging enzymes is associated with large-scale mtDNA deletions in aging human skin. Mutat Res. 1999;423:11-21. https://doi.org/10.1016/S0027-5107(98)00220-6
  23. Ozben T. Oxidative stress and apoptosis: impact on cancer therapy. J Pharm Sci. 2007;96:2181-2196. https://doi.org/10.1002/jps.20874
  24. Ahn HJ, Kim JH, Kim JK, Kim DH, Yook HS, Byun MW. Combined effects of irradiation and modified atmosphere packaging on minimally processed Chinese cabbage (Brassica rapa L.). Food Chem. 2005;89:589-597.
  25. Lee SL, Lee MS, Song KB. Effect of gamma-irradiation on the physicochemical properties of gluten films. Food Chem. 2005;92:621-625. https://doi.org/10.1016/j.foodchem.2004.08.023
  26. el-Ghalbzouri A, Gibbs S, Lamme E, Van Blitterswijk CA, Ponec M. Effect of fibroblasts on epidermal regeneration. Br J Dermatol. 2002;147:230-243. https://doi.org/10.1046/j.1365-2133.2002.04871.x