DOI QR코드

DOI QR Code

Corrosion Protection Properties of Co3O4 and CoFe2O4 Nanoparticles for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloys

  • Thu Thuy Thai (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Anh Truc Trinh (Institute for Tropical Technology, Vietnam Academy of Science and Technology) ;
  • Thi Thanh Tam Pham (Faculty of Chemistry, VNU University of Science, Vietnam National University) ;
  • Hoan Nguyen Xuan (Faculty of Chemistry, VNU University of Science, Vietnam National University)
  • Received : 2020.12.03
  • Accepted : 2022.03.30
  • Published : 2023.04.30

Abstract

In this study, cobalt oxide (Co3O4) and cobalt-doped magnetite (CoFe2O4) nanoparticles were synthesized by a hydrothermal method. They were then used as corrosion inhibitors for corrosion protection of AA2024-T3 aluminum alloys. These obtained nanoparticles were characterized by x-ray diffraction, field-emission scanning electron microscopy, and Zeta potential measurements. Corrosion inhibition activities of Co3O4 and CoFe2O4 nanoparticles were determined by performing electrochemical measurements for bare AA2024-T3 aluminum alloys in 0.05 M NaCl + 0.1 M Na2SO4 solution containing Co3O4 or CoFe2O4 nanoparticles. Corrosion protection for AA2024-T3 aluminum alloys by a water-based epoxy with or without the synthesized Co3O4 or CoFe2O4 nanoparticles was investigated by electrochemical impedance spectroscopy during immersion in 0.1 M NaCl solution. The corrosion protection of epoxy coating deposited on the AA2024-T3 surface was improved by incorporating Co3O4 or CoFe2O4 nanoparticles in the coating. The corrosion protection performance of the epoxy coating containing CoFe2O4 was higher than that of the epoxy coating containing Co3O4.

Keywords

Acknowledgement

The authors would like to thank VAST for the funding support under project NCVCC13.06/20-20.

References

  1. Henry Leidheiser Jr., and Ichiro Suzuki, Cobalt and Nickel Cations as Corrosion Inhibitors for Galvanized Steel, Journal of The Electrochemical Society, 128, 242 (1981). Doi: https://doi.org/10.1149/1.2127399
  2. Henry Leidheiser, Jr. and Gary W. Simmons, Mossbauer Spectroscopic Study of the Corrosion Inhibition of Zinc by Coigesalt Ions, Journal of The Electrochemical Society, 129, 1658 (1982). Doi: https://doi.org/10.1149/1.2124231
  3. M. A. Jakab, F. Presuel-Moreno and J. R. Scully, Effect of Molybdate, Cerium, and Cobalt Ions on the Oxygen Reduction Reaction on AA2024-T3 and Selected Intermetallics, Journal of The Electrochemical Society, 153, B244 (2006). Doi: https://doi.org/10.1149/1.2200300
  4. M. Rostami, S. Rasouli, B. Ramezanzadeh, A. Askar, Electrochemical investigation of the properties of Co doped ZnO nanoparticle as a corrosion inhibitive pigment for modifying corrosion resistance of the epoxy coating, Corrosion Science, 88, 387 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.07.056
  5. E. Ghasemi, B. Ramezanzadeh, S. Saket, S. Ashhari, Electrochemical investigation of the epoxy nanocomposites containing MnAl2,/sub>O4 and CoAl2O4 nanopigments applied on the aluminum alloy 1050, Journal of Coatings Technology and Research, 13, 97 (2016). Doi:https://doi.org/10.1007/s11998-015-9728-6
  6. J. A. Sturgill, A. W. Phelps, J. T. Swartzbaugh, Nontoxic corrosion protection pigments based on cobalt, US Patent No 7833331 B2, 16 November (2010). https://patents.google.com/patent/US7833331B2/en
  7. Trinh Anh Truc, Nguyen Xuan Hoan, Dang The Bach, Thai Thu Thuy, Kavitha Ramadass, C. I. Sathish, Nguyen Thuy Chinh, Nguyen Duy Trinh, and Thai Hoang, Hydrothermal Synthesis of Cobalt Doped Magnetite Nanoparticles for Corrosion Protection of Epoxy Coated Reinforced Steel, Journal of Nanoscience and Nanotechnology, 20, 3519 (2020). Doi: https://doi.org/10.1166/jnn.2020.17413
  8. Le Quoc Long, Tran Thi Bich Hue, Nguyen Xuan Hoan, Le Viet Cuong, Pham Duc Thang, Thai Hoang and Trinh Anh Truc, Growth Mechanism and Stability of Magnetite Nanoparticles Synthesized by the Hydrothermal Method, Journal of Nanoscience and Nanotechnology, 16, 7373 (2016). Doi: https://doi.org/10.1166/jnn.2016.11110
  9. Zhifang Huang, Yan Zhao, Yuehong Song, Yawen Li, Gongjuan Wu, Hongjiao Tang and Jingzhe Zhao, Study on the oxidation process of cobalt hydroxide to cobalt oxides at low temperatures, RSC Advances, 6, 80059 (2016). Doi: https://doi.org/10.1039/C6RA16063H
  10. T. Ishikawa, H. Nakazaki, A. Yasukawa, K. Kandori, and M. Seto, Infuences of Co2+, Cu2+, and Cr2+, ions on the formation of magnetite, Corrosion Science, 41, 1665 (1999). Doi: https://doi.org/10.1016/S0010-938X(98)00198-X
  11. G. Boisier, these de doctorat, Universite de Toulouse, 93 (2018).
  12. Thu Thuy Thai, Anh Truc Trinh, Gia Vu Pham, Thi Thanh Tam Pham, Hoan Nguyen Xuan, Corrosion Protection Properties of Cobalt Salt for Water-Based Epoxy Coatings on 2024-T3 Aluminum Alloy, Corrosion Science and Technology, 19, 8 (2020). Doi: https://doi.org/10.14773/cst.2020.19.1.8
  13. T. X. H. To, A. T. Trinh, H. N. Truong, K. O. Vu, J-B Jorcin, N. Pebere, Corrosion protection of carbon steel by an epoxy resin containing organically modified clay, Surface & Coatings Technology, 201, 7408 (2007). Doi:https://doi.org/10.1016/j.surfcoat.2007.02.009
  14. T. T. Thai, M.-E. Druart, Y. Paint, A. T. Trinh, M.-G. Olivier, Influence of the sol-gel mesoporosity on the corrosion protection given by an epoxy primer applied on aluminum alloy 2024 -T3, Progress in Organic Coatings, 121, 53 (2018). Doi: https://doi.org/10.1016/j.porgcoat.2018.04.013