DOI QR코드

DOI QR Code

Development of an Algorithm for Automatic Extraction of Lower Body Landmarks Using Grasshopper Programming Language

Grasshopper 프로그래밍 기반 3D 인체형상의 하반신 기준점 자동탐색 알고리즘 설계

  • Eun Joo Ryu (Dept. of Fashion Industry, Ewha Womans University) ;
  • Hwa Kyung Song (Dept. of Clothing and Textiles, Kyung Hee University)
  • 유은주 (이화여자대학교 의류산업학과) ;
  • 송화경 (경희대학교 의상학과)
  • Received : 2022.10.28
  • Accepted : 2023.02.13
  • Published : 2023.02.28

Abstract

This study aims to develop algorithms for automatic extraction landmarks from the lower body of women aged 20-54 using the Grasshopper programming language, based on 3D scan data in the 8th SizeKorea dataset. First, 11 landmarks were defined using the morphological features of 3D body surfaces and clothing applications, from which automatic landmark extraction algorithms were developed. To verify the accuracy of the algorithm, this study developed an additional algorithm that could automatically measure 16 items, and algorithm-derived measurements and SizeKorea measurements were compared using paired t-test analysis. The statistical differences between the scan-derived measurements and the SizeKorea measurements were compared, with an allowable tolerance of ISO 20685-1:2018. This study found that the algorithm successfully identified most items except for the crotch point and gluteal fold point. In the case of landmarks with significant differences, the algorithms were modified. This study was significant because scan editing, landmark search, and measurement extraction were successfully performed in one interface, and the developed algorithm has a high efficiency and strong adaptability.

Keywords

Acknowledgement

본 연구는 2019년 정부(교육부)의 재원으로 한국연구재단의 기초연구사업(기본연구)의 연구비를 지원받아 수행되었음(NRF-2019R1F1A1053385)

References

  1. Allen, B., Curless, B., & Popovic, Z. (2003). The space of human body shapes: reconstruction and parameterization from range scans. ACM Transactions on Graphics, 22(3), 587-594. doi:10.1145/882262.882311
  2. Anguelov, D., Srinivasan, P., Pang, H.-c., Koller, D., Thrun, S., & Davis, J. (2004). The correlated correspondence algorithm for unsupervised registration of nonrigid surfaces. Advances in Neural Information Processing Systems 17 (NIPS 2004). https://proceedings.neurips.cc/paper/2004/hash/e02e27e04fdff967ba7d76fb24b8069d-Abstract.html
  3. Au, C. K., & Yuen, M. M. F. (1999). Feature-based reverse engineering of mannequin for garment design. Computer-Aided Design, 31(12), 751-759. doi:10.1016/S0010-4485(99)00068-8
  4. Azouz, Z. B., Shu, C., & Mantel, A. (2006). Automatic locating of anthropometric landmarks on 3D human models. Proceedings of Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), USA, 750-757. doi:10.1109/3DPVT.2006.34
  5. Cha, S. (2012). Comparison of size between direct-measurement and 3D body scanning. Journal of Fashion Business, 16(1), 150-159. doi:10.12940/ jfb.2012.16.1.150
  6. Han, H., Nam, Y., & Hwang Shin, S.-J. (2010). Algorithms of the automatic landmark identification for various torso shapes. International Journal of Clothing Science and Technology, 22(5), 343-357. doi:10.1108/09556221011071811
  7. Hsu, M.-C., Wang, C., Herrema, A. J., Schillinger, D., Ghoshal, A., & Bazilevs, Y. (2015). An interactive geometry modeling and parametric design platform for isogeometric analysis. Computers & Mathematics with Applications, 70(7), 1481-1500. doi:10.1016/j.camwa.2015.04.002
  8. International Organization for Standardization. (2018, October). ISO 20685-1:2018 3-D scanning methodologies for internationally compatible anthropometric databases - Part 1: Evaluation protocol for body dimensions extracted from 3-D body scans [PDF document]. ISO. Retrieved from https://www.iso.org/standard/63260.html
  9. Kim, Y., Song, H. K., & Ashdown, S. P. (2016). Women's petite and regular body measurements compared to current retail sizing conventions. International Journal of Clothing Science and Technology, 28(1), 47-64. doi:10.1108/IJCST-07-2014-0081
  10. Korean Agency for Technology and Standards. (2019, July 26). KS K 0051:2019 Sizing systems for female adult's garments. Korean Standards & Certifications. Retrieved from https://standard.go.kr/KSCI/standardIntro/getStandardSearchView.do?menuId=503&topMenuId=502&ksNo=KSK0051&tmprKsNo=KSK0051&reformNo=04
  11. Korean Agency for Technology and Standards. (2021a). 8차 인 체치수조사 치수 데이터 (2020~21) [The 8th anthropometric survey (2020-21) measurement data]. Size Korea. Retrieved from https://sizekorea.kr/human-info/meas-report?measDegree=8
  12. Korean Agency for Technology and Standards. (2021b). 8차 인체치수조사 결과보고서 (2020~21) [The 8th anthropometric survey (2020-21) report]. Size Korea. Retrieved from https://sizekorea.kr/human-info/meas-report?measDegree=8
  13. Kouchi, M., & Mochimaru, M. (2011). Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. Applied Ergonomics, 42(3), 518-527. doi:10.1016/j.apergo.2010.09.011
  14. Kwon, Y. M., Lee, Y.-A. & Kim, S. J. (2017). Case study on 3D printing education in fashion design coursework. Fashion and Textiles, 4:26, doi:10.1186/s40691-017-0111-3
  15. Lee, J. Y., Joo, S. Y., & Ashdown, S. P. (2004). A basic study contributes to extract the standardized 3D body data for women aged 60 and older. Journal of the Korean Society of Clothing and Textiles, 28(2), 344-353.
  16. Lee, K. S., & Song, H. K. (2021). Automation of 3D average human body shape modeling using Rhino and Grasshopper Algorithm. Fashion and Textiles, 8:23. doi:10.1186/s40691-021-00249-6
  17. Leong, I.-F., Fang, J.-J., & Tsai, M.-J. (2007). Automatic body feature extraction from a marker-less scanned human body. Computer-Aided Design, 39(7), 568-582. doi:10.1016/j.cad.2007.03.003
  18. Liu, Y.-J., Zhang, D.-L., & Yuen, M. M.-F. (2010). A survey on CAD methods in 3D garment design. Computers in Industry, 61(6), 576-593. doi:10.1016/j.compind.2010.03.007
  19. Lu, J.-M., & Wang, M.-J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1-2), 407-414. doi:10.1016/j.eswa.2007.07.008
  20. Mckinnon, L., & Istook, C. L. (2002). Body scanning: The effects of subject respiration and foot positioning on the data integrity of scanned measurements. Journal of Fashion Marketing and Management, 6(2), 103-121. doi:10.1108/13612020210429458
  21. Niu, J. W., Zheng, X. H., Zhao, M., Fan, N., & Ding, S. T. (2011). Landmark automatic identification from three-dimensional (3D) data by using Hidden Markov Model (HMM). Proceedings of 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management, China, Part 1, 600-604. doi:10.1109/ICIEEM.2011.6035230
  22. Park, H., & Koo, H. (2018). Emerging trends in 3D technology adopted in apparel design research and product development. Journal of the Korean Society of Clothing and Textiles, 42(1), 195-209. doi:10.5850/JKSCT.2018.42.1.195
  23. Park, S.-M., & Nam, Y.-J. (2012). The verification of accuracy of 3D body scan data - Focused on the Cyberware WB4 whole body scanner -. Journal of the Korea Fashion & Costume Design Association, 14(1), 81-96.
  24. Ryu, E. J., & Song, H. K. (2022). Automatic extraction of upper body landmarks using Rhino and Grasshopper algorithms. Fashion and Textiles, 9:36. doi:10.1186/s40691-022-00302-y
  25. Shi, X., & Yang, W. (2013). Performance-driven architectural design and optimization technique from a perspective of architects. Automation in Construction, 32, 125-135. doi:10.1016/j.autcon.2013.01.015
  26. Suikerbuik, R., Tangelder, H., Daanen, H., & Oudenhuijzen, A. (2004). Automatic feature detection in 3D human body scans. SAE Transactions, 113, 260-263. Retrieved from http://www.jstor.org/stable/44737881
  27. Xia, S., Guo, S., Li, J., & Istook, C. (2019). Comparison of different body measurement techniques: 3D stationary scanner, 3D handheld scanner, and tape measurement. The Journal of The Textile Institute, 110(8), 1103-1113. doi:10.1080/00405000.2018.1541437
  28. Yoon, M. K., & Nam, Y. J. (2016). Women's pant pattern design according to the style using 3D body scan data. Journal of the Korean Society of Clothing and Textiles, 40(1), 97-113. doi:10.5850/JKSCT.2016.40.1.97