DOI QR코드

DOI QR Code

PSME4 determines mesenchymal stem cell fate towards cardiac commitment through YAP1 degradation

  • Mira Kim (Department of Pharmacology, Chonnam National University Medical School) ;
  • Yong Sook Kim (Biomedical Research Institute) ;
  • Youngkeun Ahn (Department of Cardiology, Chonnam National University Hospital) ;
  • Gwang Hyeon Eom (Department of Pharmacology, Chonnam National University Medical School) ;
  • Somy Yoon (College of Pharmacy, Chonnam National University)
  • Received : 2023.04.12
  • Accepted : 2023.05.01
  • Published : 2023.07.01

Abstract

The regeneration of myocardium following acute circulatory events remains a challenge, despite numerous efforts. Mesenchymal stem cells (MSCs) present a promising cell therapy option, but their differentiation into cardiomyocytes is a time-consuming process. Although it has been demonstrated that PSME4 degrades acetyl-YAP1, the role of PSME4 in the cardiac commitment of MSCs has not been fully elucidated. Here we reported the novel role of PSME4 in MSCs cardiac commitment. It was found that overnight treatment with apicidin in primary-cultured mouse MSCs led to rapid cardiac commitment, while MSCs from PSME4 knock-out mice did not undergo this process. Cardiac commitment was also observed using lentivirus-mediated PSME4 knockdown in immortalized human MSCs. Immunofluorescence and Western blot experiments revealed that YAP1 persisted in the nucleus of PSME4 knockdown cells even after apicidin treatment. To investigate the importance of YAP1 removal, MSCs were treated with shYAP1 and apicidin simultaneously. This combined treatment resulted in rapid YAP1 elimination and accelerated cardiac commitment. However, overexpression of acetylation-resistant YAP1 in apicidin-treated MSCs impeded cardiac commitment. In addition to apicidin, the universal effect of histone deacetylase (HDAC) inhibition on cardiac commitment was confirmed using tubastatin A and HDAC6 siRNA. Collectively, this study demonstrates that PSME4 is crucial for promoting the cardiac commitment of MSCs. HDAC inhibition acetylates YAP1 and facilitates its translocation to the nucleus, where it is removed by PSME4, promoting cardiac commitment. The failure of YAP1 to translocate or be eliminated from the nucleus results in the MSCs' inability to undergo cardiac commitment.

Keywords

Acknowledgement

We gratefully acknowledge the assistance of GPT-4.0, a large language model developed by OpenAI, for its help in grammar checking and refining our manuscript. It is important to note that GPT-4.0 was solely utilized for enhancing the grammatical quality of the text, and no new content was generated by the model. All intellectual contributions remain exclusively with the authors.

References

  1. Writing Group Members; Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, et al.; American Heart Association Statistics Committee; Stroke Statistics Subcommittee. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38-360. Erratum in: Circulation. 2016;133:e599. 
  2. Drozd M, Pujades-Rodriguez M, Sun F, Franks KN, Lillie PJ, Witte KK, Kearney MT, Cubbon RM. Causes of death in people with cardiovascular disease: a UK biobank cohort study. J Am Heart Assoc. 2021;10:e023188.
  3. Williams AR, Hare JM. Mesenchymal stem cells: biology, pathophysiology, translational findings, and therapeutic implications for cardiac disease. Circ Res. 2011;109:923-940.  https://doi.org/10.1161/CIRCRESAHA.111.243147
  4. Gao LR, Pei XT, Ding QA, Chen Y, Zhang NK, Chen HY, Wang ZG, Wang YF, Zhu ZM, Li TC, Liu HL, Tong ZC, Yang Y, Nan X, Guo F, Shen JL, Shen YH, Zhang JJ, Fei YX, Xu HT, et al. A critical challenge: dosage-related efficacy and acute complication intracoronary injection of autologous bone marrow mesenchymal stem cells in acute myocardial infarction. Int J Cardiol. 2013;168:3191-3199. https://doi.org/10.1016/j.ijcard.2013.04.112
  5. Rodrigo SF, van Ramshorst J, Hoogslag GE, Boden H, Velders MA, Cannegieter SC, Roelofs H, Al Younis I, Dibbets-Schneider P, Fibbe WE, Zwaginga JJ, Bax JJ, Schalij MJ, Beeres SL, Atsma DE. Intramyocardial injection of autologous bone marrow-derived ex vivo expanded mesenchymal stem cells in acute myocardial infarction patients is feasible and safe up to 5 years of follow-up. J Cardiovasc Transl Res. 2013;6:816-825. https://doi.org/10.1007/s12265-013-9507-7
  6. Guo Y, Yu Y, Hu S, Chen Y, Shen Z. The therapeutic potential of mesenchymal stem cells for cardiovascular diseases. Cell Death Dis. 2020;11:349.
  7. Hare JM, Traverse JH, Henry TD, Dib N, Strumpf RK, Schulman SP, Gerstenblith G, DeMaria AN, Denktas AE, Gammon RS, Hermiller JB Jr, Reisman MA, Schaer GL, Sherman W. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol. 2009;54:2277-2286.  https://doi.org/10.1016/j.jacc.2009.06.055
  8. Wang X, Xi WC, Wang F. The beneficial effects of intracoronary autologous bone marrow stem cell transfer as an adjunct to percutaneous coronary intervention in patients with acute myocardial infarction. Biotechnol Lett. 2014;36:2163-2168.  https://doi.org/10.1007/s10529-014-1589-z
  9. Pickering AM, Davies KJ. Degradation of damaged proteins: the main function of the 20S proteasome. Prog Mol Biol Transl Sci. 2012;109:227-248. https://doi.org/10.1016/B978-0-12-397863-9.00006-7
  10. Pickering AM, Davies KJ. Differential roles of proteasome and immunoproteasome regulators Pa28αβ, Pa28γ and Pa200 in the degradation of oxidized proteins. Arch Biochem Biophys. 2012;523:181- 190. https://doi.org/10.1016/j.abb.2012.04.018
  11. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20:651-668. https://doi.org/10.1038/s41577-020-0306-5
  12. Blickwedehl J, Agarwal M, Seong C, Pandita RK, Melendy T, Sung P, Pandita TK, Bangia N. Role for proteasome activator PA200 and postglutamyl proteasome activity in genomic stability. Proc Natl Acad Sci U S A. 2008;105:16165-16170. https://doi.org/10.1073/pnas.0803145105
  13. Qian MX, Pang Y, Liu CH, Haratake K, Du BY, Ji DY, Wang GF, Zhu QQ, Song W, Yu Y, Zhang XX, Huang HT, Miao S, Chen LB, Zhang ZH, Liang YN, Liu S, Cha H, Yang D, Zhai Y, et al. Acetylation-mediated proteasomal degradation of core histones during DNA repair and spermatogenesis. Cell. 2013;153:1012-1024.  https://doi.org/10.1016/j.cell.2013.04.032
  14. Kim YS, Kim M, Cho DI, Lim SY, Jun JH, Kim MR, Kang BG, Eom GH, Kang G, Yoon S, Ahn Y. PSME4 degrades acetylated YAP1 in the nucleus of mesenchymal stem cells. Pharmaceutics. 2022;14:1659.
  15. Zhao B, Li L, Lei Q, Guan KL. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 2010;24:862-874.  https://doi.org/10.1101/gad.1909210
  16. Lian I, Kim J, Okazawa H, Zhao J, Zhao B, Yu J, Chinnaiyan A, Israel MA, Goldstein LS, Abujarour R, Ding S, Guan KL. The role of YAP transcription coactivator in regulating stem cell self-renewal and differentiation. Genes Dev. 2010;24:1106-1118.  https://doi.org/10.1101/gad.1903310
  17. Yu FX, Zhao B, Guan KL. Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell. 2015;163:811-828. https://doi.org/10.1016/j.cell.2015.10.044
  18. Chung H, Lee BK, Uprety N, Shen W, Lee J, Kim J. Yap1 is dispensable for self-renewal but required for proper differentiation of mouse embryonic stem (ES) cells. EMBO Rep. 2016;17:519-529.  https://doi.org/10.15252/embr.201540933
  19. LeBlanc L, Lee BK, Yu AC, Kim M, Kambhampati AV, Dupont SM, Seruggia D, Ryu BU, Orkin SH, Kim J. Yap1 safeguards mouse embryonic stem cells from excessive apoptosis during differentiation. Elife. 2018;7:e40167. 
  20. Lu Q, Scott PA, Vukmanic EV, Kaplan HJ, Dean DC, Li Q. Yap1 is required for maintenance of adult RPE differentiation. FASEB J. 2020;34:6757-6768. https://doi.org/10.1096/fj.201903234R
  21. Hu X, Xin Y, Xiao Y, Zhao J. Overexpression of YAP1 is correlated with progression, metastasis and poor prognosis in patients with gastric carcinoma. Pathol Oncol Res. 2014;20:805-811.  https://doi.org/10.1007/s12253-014-9757-y
  22. von Gise A, Lin Z, Schlegelmilch K, Honor LB, Pan GM, Buck JN, Ma Q, Ishiwata T, Zhou B, Camargo FD, Pu WT. YAP1, the nuclear target of Hippo signaling, stimulates heart growth through cardiomyocyte proliferation but not hypertrophy. Proc Natl Acad Sci U S A. 2012;109:2394-2399. https://doi.org/10.1073/pnas.1116136109
  23. Cho DI, Kang WS, Hong MH, Kang HJ, Kim MR, Kim MC, Kim YS, Ahn Y. The optimization of cell therapy by combinational application with apicidin-treated mesenchymal stem cells after myocardial infarction. Oncotarget. 2017;8:44281-44294.  https://doi.org/10.18632/oncotarget.17471
  24. Bartunek J, Terzic A, Davison BA, Filippatos GS, Radovanovic S, Beleslin B, Merkely B, Musialek P, Wojakowski W, Andreka P, Horvath IG, Katz A, Dolatabadi D, El Nakadi B, Arandjelovic A, Edes I, Seferovic PM, Obradovic S, Vanderheyden M, Jagic N, et al.; CHART Program. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J. 2017;38:648-660.
  25. Kim JS, Lee S, Lee T, Lee YW, Trepel JB. Transcriptional activation of p21(WAF1/CIP1) by apicidin, a novel histone deacetylase inhibitor. Biochem Biophys Res Commun. 2001;281:866-871.  https://doi.org/10.1006/bbrc.2001.4434
  26. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in cell lineage fate determination and related signaling pathways. Front Cell Dev Biol. 2020;8:735.
  27. Lundin V, Sugden WW, Theodore LN, Sousa PM, Han A, Chou S, Wrighton PJ, Cox AG, Ingber DE, Goessling W, Daley GQ, North TE. YAP regulates hematopoietic stem cell formation in response to the biomechanical forces of blood flow. Dev Cell. 2020;52:446-460.e5.  https://doi.org/10.1016/j.devcel.2020.01.006
  28. Rosado-Olivieri EA, Anderson K, Kenty JH, Melton DA. YAP inhibition enhances the differentiation of functional stem cell-derived insulin-producing β cells. Nat Commun. 2019;10:1464. 
  29. Hansen CG, Moroishi T, Guan KL. YAP and TAZ: a nexus for Hippo signaling and beyond. Trends Cell Biol. 2015;25:499-513.  https://doi.org/10.1016/j.tcb.2015.05.002
  30. Hata S, Hirayama J, Kajiho H, Nakagawa K, Hata Y, Katada T, Furutani-Seiki M, Nishina H. A novel acetylation cycle of transcription co-activator Yes-associated protein that is downstream of Hippo pathway is triggered in response to SN2 alkylating agents. J Biol Chem. 2012;287:22089-22098. https://doi.org/10.1074/jbc.M111.334714
  31. Zhao B, Li L, Tumaneng K, Wang CY, Guan KL. A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). Genes Dev. 2010;24:72-85.  https://doi.org/10.1101/gad.1843810
  32. Zhao B, Wei X, Li W, Udan RS, Yang Q, Kim J, Xie J, Ikenoue T, Yu J, Li L, Zheng P, Ye K, Chinnaiyan A, Halder G, Lai ZC, Guan KL. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 2007;21:2747-2761. https://doi.org/10.1101/gad.1602907
  33. Ito M, Hara H, Takeda N, Naito AT, Nomura S, Kondo M, Hata Y, Uchiyama M, Morita H, Komuro I. Characterization of a small molecule that promotes cell cycle activation of human induced pluripotent stem cell-derived cardiomyocytes. J Mol Cell Cardiol. 2019;128:90-95. https://doi.org/10.1016/j.yjmcc.2019.01.020
  34. Wang X, Ha T, Liu L, Hu Y, Kao R, Kalbfleisch J, Williams D, Li C. TLR3 mediates repair and regeneration of damaged neonatal heart through glycolysis dependent YAP1 regulated miR-152 expression. Cell Death Differ. 2018;25:966-982.  https://doi.org/10.1038/s41418-017-0036-9