DOI QR코드

DOI QR Code

Monitoring trafficking and expression of hemagglutinin-tagged transient receptor potential melastatin 4 channel in mammalian cells

  • Eun Mi Hwang (Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Bo Hyun Lee (Department of Physiology, College of Medicine, Gyeongsang National University) ;
  • Eun Hye Byun (Department of Physiology, College of Medicine, Gyeongsang National University) ;
  • Soomin Lee (Brain Science Institute, Korea Institute of Science and Technology (KIST)) ;
  • Dawon Kang (Department of Physiology, College of Medicine, Gyeongsang National University) ;
  • Dong Kun Lee (Department of Physiology, College of Medicine, Gyeongsang National University) ;
  • Min Seok Song (Department of Physiology, College of Medicine, Gyeongsang National University) ;
  • Seong-Geun Hong (Department of Physiology, College of Medicine, Gyeongsang National University)
  • Received : 2023.05.22
  • Accepted : 2023.06.05
  • Published : 2023.07.01

Abstract

The TRPM4 gene encodes a Ca2+-activated monovalent cation channel called transient receptor potential melastatin 4 (TRPM4) that is expressed in various tissues. Dysregulation or abnormal expression of TRPM4 has been linked to a range of diseases. We introduced the hemagglutinin (HA) tag into the extracellular S6 loop of TRPM4, resulting in an HA-tagged version called TRPM4-HA. This TRPM4-HA was developed to investigate the purification, localization, and function of TRPM4 in different physiological and pathological conditions. TRPM4-HA was successfully expressed in the intact cell membrane and exhibited similar electrophysiological properties, such as the current-voltage relationship, rapid desensitization, and current size, compared to the wild-type TRPM4. The presence of the TRPM4 inhibitor 9-phenanthrol did not affect these properties. Furthermore, a wound-healing assay showed that TRPM4-HA induced cell proliferation and migration, similar to the native TRPM4. Co-expression of protein tyrosine phosphatase, non-receptor type 6 (PTPN6 or SHP1) with TRPM4-HA led to the translocation of TRPM4-HA to the cytosol. To investigate the interaction between PTPN6 and tyrosine residues of TRPM4 in enhancing channel activity, we generated four mutants in which tyrosine (Y) residues were substituted with phenylalanine (F) at the N-terminus of TRPM4. The YF mutants displayed properties and functions similar to TRPM4-HA, except for the Y256F mutant, which showed resistance to 9-phenanthrol, suggesting that Y256 may be involved in the binding site for 9-phenanthrol. Overall, the creation of HA-tagged TRPM4 provides researchers with a valuable tool to study the role of TRPM4 in different conditions and its potential interactions with other proteins, such as PTPN6.

Keywords

Acknowledgement

We thank Professor Jae Yong Park (Korea University college of Health Science) for technical advices on BiFC analysis.

References

  1. Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+-activated nonselective cation channel mediating cell membrane depolarization. Cell. 2002;109:397-407.  https://doi.org/10.1016/S0092-8674(02)00719-5
  2. Nilius B, Prenen J, Droogmans G, Voets T, Vennekens R, Freichel M, Wissenbach U, Flockerzi V. Voltage dependence of the Ca2+-activated cation channel TRPM4. J Biol Chem. 2003;278:30813-30820. https://doi.org/10.1074/jbc.M305127200
  3. Murakami M, Xu F, Miyoshi I, Sato E, Ono K, Iijima T. Identification and characterization of the murine TRPM4 channel. Biochem Biophys Res Commun. 2003;307:522-528.  https://doi.org/10.1016/S0006-291X(03)01186-0
  4. Jang Y, Lee Y, Kim SM, Yang YD, Jung J, Oh U. Quantitative analysis of TRP channel genes in mouse organs. Arch Pharm Res. 2012;35:1823-1830.  https://doi.org/10.1007/s12272-012-1016-8
  5. Guinamard R, Bouvagnet P, Hof T, Liu H, Simard C, Salle L. TRPM4 in cardiac electrical activity. Cardiovasc Res. 2015;108:21-30.  https://doi.org/10.1093/cvr/cvv213
  6. Wang H, Xu Z, Lee BH, Vu S, Hu L, Lee M, Bu D, Cao X, Hwang S, Yang Y, Zheng J, Lin Z. Gain-of-function mutations in TRPM4 activation gate cause progressive symmetric erythrokeratodermia. J Invest Dermatol. 2019;139:1089-1097.  https://doi.org/10.1016/j.jid.2018.10.044
  7. Coban G, Yildiz P, Dogan B, Sahin N, Gucin Z. Expression of transient receptor potential melastatin 4 in differential diagnosis of eosinophilic renal tumors. Mol Clin Oncol. 2021;15:230. 
  8. Kappel S, Stoklosa P, Hauert B, Ross-Kaschitza D, Borgstrom A, Baur R, Galvan JA, Zlobec I, Peinelt C. TRPM4 is highly expressed in human colorectal tumor buds and contributes to proliferation, cell cycle, and invasion of colorectal cancer cells. Mol Oncol. 2019;13:2393-2405.  https://doi.org/10.1002/1878-0261.12566
  9. Sagredo AI, Sagredo EA, Cappelli C, Baez P, Andaur RE, Blanco C, Tapia JC, Echeverria C, Cerda O, Stutzin A, Simon F, Marcelain K, Armisen R. TRPM4 regulates Akt/GSK3-β activity and enhances β-catenin signaling and cell proliferation in prostate cancer cells. Mol Oncol. 2018;12:151-165.  https://doi.org/10.1002/1878-0261.12100
  10. Caceres M, Ortiz L, Recabarren T, Romero A, Colombo A, Leiva-Salcedo E, Varela D, Rivas J, Silva I, Morales D, Campusano C, Almarza O, Simon F, Toledo H, Park KS, Trimmer JS, Cerda O. TRPM4 is a novel component of the adhesome required for focal adhesion disassembly, migration and contractility. PLoS One. 2015;10:e0130540. 
  11. Launay P, Cheng H, Srivatsan S, Penner R, Fleig A, Kinet JP. TRPM4 regulates calcium oscillations after T cell activation. Science. 2004;306:1374-1377. https://doi.org/10.1126/science.1098845
  12. Vennekens R, Olausson J, Meissner M, Bloch W, Mathar I, Philipp SE, Schmitz F, Weissgerber P, Nilius B, Flockerzi V, Freichel M. Increased IgE-dependent mast cell activation and anaphylactic responses in mice lacking the calcium-activated nonselective cation channel TRPM4. Nat Immunol. 2007;8:312-320. https://doi.org/10.1038/ni1441
  13. Barbet G, Demion M, Moura IC, Serafini N, Leger T, Vrtovsnik F, Monteiro RC, Guinamard R, Kinet JP, Launay P. The calcium-activated nonselective cation channel TRPM4 is essential for the migration but not the maturation of dendritic cells. Nat Immunol. 2008;9:1148-1156.  https://doi.org/10.1038/ni.1648
  14. Shimizu T, Owsianik G, Freichel M, Flockerzi V, Nilius B, Vennekens R. TRPM4 regulates migration of mast cells in mice. Cell Calcium. 2009;45:226-232.  https://doi.org/10.1016/j.ceca.2008.10.005
  15. Gao Y, Liao P. TRPM4 channel and cancer. Cancer Lett. 2019;454:66-69.  https://doi.org/10.1016/j.canlet.2019.04.012
  16. Watanabe H, Murakami M, Ohba T, Ono K, Ito H. The pathological role of transient receptor potential channels in heart disease. Circ J. 2009;73:419-427.  https://doi.org/10.1253/circj.CJ-08-1153
  17. Wang C, Naruse K, Takahashi K. Role of the TRPM4 channel in cardiovascular physiology and pathophysiology. Cells. 2018;7:62. 
  18. Otsuka Saito K, Fujita F, Toriyama M, Utami RA, Guo Z, Murakami M, Kato H, Suzuki Y, Okada F, Tominaga M, Ishii KJ. Roles of TRPM4 in immune responses in keratinocytes and identification of a novel TRPM4-activating agent. Biochem Biophys Res Commun. 2023;654:1-9.
  19. Holzmann C, Kappel S, Kilch T, Jochum MM, Urban SK, Jung V, Stockle M, Rother K, Greiner M, Peinelt C. Transient receptor potential melastatin 4 channel contributes to migration of androgen-insensitive prostate cancer cells. Oncotarget. 2015;6:41783-41793. https://doi.org/10.18632/oncotarget.6157
  20. Berg KD, Soldini D, Jung M, Dietrich D, Stephan C, Jung K, Dietel M, Vainer B, Kristiansen G. TRPM4 protein expression in prostate cancer: a novel tissue biomarker associated with risk of biochemical recurrence following radical prostatectomy. Virchows Arch. 2016;468:345-355. https://doi.org/10.1007/s00428-015-1880-y
  21. Sagredo AI, Sagredo EA, Pola V, Echeverria C, Andaur R, Michea L, Stutzin A, Simon F, Marcelain K, Armisen R. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J Cell Physiol. 2019;234:2037-2050. https://doi.org/10.1002/jcp.27371
  22. Ashida S, Nakagawa H, Katagiri T, Furihata M, Iiizumi M, Anazawa Y, Tsunoda T, Takata R, Kasahara K, Miki T, Fujioka T, Shuin T, Nakamura Y. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004;64:5963-5972.  https://doi.org/10.1158/0008-5472.CAN-04-0020
  23. Lee DK, Park JY, Yoo JC, Byun EH, Bae YJ, Lee YS, Park N, Kang D, Han J, Park JY, Hwang E, Hong SG. PTPN6 regulates the cell-surface expression of TRPM4 channels in HEK293 cells. Pflugers Arch. 2018;470:1449-1458. https://doi.org/10.1007/s00424-018-2161-9
  24. Winkler PA, Huang Y, Sun W, Du J, Lu W. Electron cryo-microscopy structure of a human TRPM4 channel. Nature. 2017;552:200-204.  https://doi.org/10.1038/nature24674
  25. Guinamard R, Hof T, Del Negro CA. The TRPM4 channel inhibitor 9-phenanthrol. Br J Pharmacol. 2014;171:1600-1613.  https://doi.org/10.1111/bph.12582
  26. Jarvik JW, Telmer CA. Epitope tagging. Annu Rev Genet. 1998;32:601-618. https://doi.org/10.1146/annurev.genet.32.1.601
  27. Maue RA. Understanding ion channel biology using epitope tags: progress, pitfalls, and promise. J Cell Physiol. 2007;213:618-625.  https://doi.org/10.1002/jcp.21259
  28. Kennedy ME, Nemec J, Clapham DE. Localization and interaction of epitope-tagged GIRK1 and CIR inward rectifier K+ channel subunits. Neuropharmacology. 1996;35:831-839.  https://doi.org/10.1016/0028-3908(96)00132-3
  29. Peters KW, Qi J, Johnson JP, Watkins SC, Frizzell RA. Role of snare proteins in CFTR and ENaC trafficking. Pflugers Arch. 2001;443 Suppl 1:S65-69.  https://doi.org/10.1007/s004240100647
  30. Czech MP, Chawla A, Woon CW, Buxton J, Armoni M, Tang W, Joly M, Corvera S. Exofacial epitope-tagged glucose transporter chimeras reveal COOH-terminal sequences governing cellular localization. J Cell Biol. 1993;123:127-135.  https://doi.org/10.1083/jcb.123.1.127
  31. Wadzinski BE, Eisfelder BJ, Peruski LF Jr, Mumby MC, Johnson GL. NH2-terminal modification of the phosphatase 2A catalytic subunit allows functional expression in mammalian cells. J Biol Chem. 1992; 267:16883-16888.  https://doi.org/10.1016/S0021-9258(18)41867-4
  32. Kast C, Canfield V, Levenson R, Gros P. Transmembrane organization of mouse P-glycoprotein determined by epitope insertion and immunofluorescence. J Biol Chem. 1996;271:9240-9248.  https://doi.org/10.1074/jbc.271.16.9240
  33. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem. 2006;281:13588-13595.  https://doi.org/10.1074/jbc.M512205200
  34. Armisen R, Marcelain K, Simon F, Tapia JC, Toro J, Quest AF, Stutzin A. TRPM4 enhances cell proliferation through up-regulation of the β-catenin signaling pathway. J Cell Physiol. 2011;226:103-109.  https://doi.org/10.1002/jcp.22310
  35. Autzen HE, Myasnikov AG, Campbell MG, Asarnow D, Julius D, Cheng Y. Structure of the human TRPM4 ion channel in a lipid nanodisc. Science. 2018;359:228-232. https://doi.org/10.1126/science.aar4510