DOI QR코드

DOI QR Code

Relationship Between Properties Degradation and Critical Aging Time of Super Austenitic and Duplex Stainless Steels

  • S. H. Choi (Department of Materials Science and Engineering, Andong National University) ;
  • Y. R. Yoo (Materials Research Centre for Energy and Clean Technology, Andong National University) ;
  • S. Y. Won (Department of Materials Science and Engineering, Andong National University) ;
  • G. B. Kim (Department of Materials Science and Engineering, Andong National University) ;
  • Y. S. Kim (Department of Materials Science and Engineering, Andong National University)
  • Received : 2023.10.14
  • Accepted : 2023.10.24
  • Published : 2023.10.30

Abstract

The objective of this study was to analyze effects of aging time on property degradation of super austenitic stainless steel of PRE 52.8 and super duplex stainless steel of PRE 48.7. To analyze corrosion properties based on aging time, a critical pitting temperature test was performed in a solution of 6% FeCl3 + 1% HCl and an anodic polarization test was performed in deaerated 0.5N HCl + 1N NaCl solution at a temperature of 50 ℃. Surface hardness was measured to analyze mechanical properties. It was found that corrosion properties and mechanical properties deteriorated rapidly as aging time increased. Critical pitting temperature had the most effect on critical aging time at which property changes occurred rapidly, followed by pitting potential and hardness. This trend was found to be closely related to the fraction of sigma phase. Rate of sigma phase formation was found to be significantly faster in duplex stainless steel than in austenitic stainless steel.

Keywords

Acknowledgement

This research was supported by a grant from the 2023-2024 Research funds of Andong National University, and Korea Institute for Advancement of Technology (KIAT) grant funded by the Korea Government (MOTIE) (P0008458, HRD Program for Industrial Innovation).

References

  1. R. R. Maller, Passivation of stainless steel, Trends in Food Science & Technology, 9, 28 (1998). Doi: https://doi.org/10.1016/S0924-2244(97)00004-6
  2. A. H. Tuthill and R. E. Avery, Specifying stainless steel surface treatments, Advanced Materials & Processes, 142, 34 (1992).
  3. K. Sotoodeh, Analysis and improvement of material selection for process piping system in offshore industry, American Journal of Mechanical Engineering, 6, 17 (2018). Doi: https://doi.org/10.12691/ajme-6-1-3
  4. E. Messinese, L. Casanova, L. Paterlini, F. Capelli, F. Bolzoni, M. Ormellese, A. Brenna, A comprehensive investigation on the effects of surface finishing on the resistance of stainless steel to localized corrosion, Metals, 12, 1751 (2022). Doi: https://doi.org/10.3390/met12101751
  5. D. Kim, W. Chung, B. H. Shin, Effects of the volume fraction of the secondary phase after solution annealing on electrochemical properties of super duplex stainless steel UNS S32750, Metals, 13, 957 (2023). Doi: https://doi.org/10.3390/met13050957
  6. Y. Das, J. Liu, H. Ehteshami, J. Odqvist, N. H. Pettersson, S. Wessman, S. King, P. Hedstrom, Quantitative nanostructure and hardness evolution in duplex stainless steels: under real low-temperature service conditions, Metallurgical and Materials Transactions A, 53, 723 (2022). Doi: https://doi.org/10.1007/s11661-021-06547-4
  7. G. Kim, S. H. Shin, B. Hwang, Machine learning approach for prediction of hydrogen environment embrittlement in austenitic steels, Materials Research and Technology, 19, 2794 (2022). Doi: https://doi.org/10.1016/j.jmrt.2022.06.046
  8. S. Y. Won, G. B. Kim, Y. R. Yoo, S. H. Choi, and Y. S. Kim, Intergranular corrosion behavior of medium and low carbon austenitic stainless steel, Corrosion Science and Technology, 21, 230 (2022). Doi: https://doi.org/10.14773/cst.2022.21.3.230
  9. N. L. Isern, H. L. Luque, I. L. Jimenez, M. V. Biezma, Identification of sigma and chi phases in duplex stainless steels, Materials Characterization, 112, 20 (2016). Doi: https://doi.org/10.1016/j.matchar.2015.12.004
  10. K. H. Lo, C. H. Shek, J. K. L. Lai, Recent developments in stainless steels, Materials Science and Engineering R, 65, 39 (2009). Doi: https://doi.org/10.1016/j.mser.2009.03.001
  11. A. F. Padilha, P. R. Rios, Decomposition of Austenite in Austenitic Stainless Steels, ISIJ International, 42, 325 (2002). Doi: https://doi.org/10.2355/isijinternational.42.325
  12. T. H Chen, J. R Yang, Effects of solution treatment and continuous cooling on σ-phase precipitation in a 2205 duplex stainless steel, Materials Science and Engineering A, 311, 28 (2001). Doi: https://doi.org/10.1016/s0921-5093(01)00911-x
  13. L. Duprez, B. C. D. Cooman, N. Akdut, Redistribution of the substitutional elements during σ and χ phase formation in a duplex stainless steel, Steel Research, 72, 311 (2001). Doi: https://doi.org/10.1002/srin.200100123
  14. D. M. E. Villanueva, F. C. P. Junior, R. L. Plaut, A. F. Padilha, Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, super ferritic and duplex, Materials Science and Technology, 22, 1098 (2006). Doi: https://doi.org/10.1179/174328406x109230
  15. D. Wasnik, G. K. Dey, V. Kain, I. Samajdar, Precipitation stages in a 316L austenitic stainless steel, Scripta Materialia, 49, 135 (2003). Doi: https://doi.org/10.1016/s1359-6462(03)00220-3
  16. M. Schwind, J. Kallqvist, J. O. Nilsson, J. Agren, H. O. Andren, σ-phase precipitation in stabilized austenitic stainless steels, Acta Materialia, 48, 2473 (2000). Doi: https://doi.org/10.1016/s1359-6454(00)00069-0
  17. H. U. Hong, B. S. Rho, S. W. Nam, Correlation of the M23C6 precipitation morphology with grain boundary characteristics in austenitic stainless steel, Materials Science and Engineering A, 318, 285 (2001). Doi: https://doi.org/10.1016/s0921-5093(01)01254-0
  18. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Effects of Cr and Mo on precipitation behavior and associated intergranular corrosion susceptibility of super austenitic stainless steel S32654, Materials Characterization, 152, 141 (2019). Doi: https://doi.org/10.1016/j.matchar.2019.04.010
  19. J. Xiao, Y. Zhang, W. Zhang, A. Zhao, Precipitation mechanism of σ phase in S32654 super austenitic stainless steel, Materials Letter, 349, 134834 (2023). Doi: https://doi.org/10.1016/j.matlet.2023.134834
  20. J. K. Kim, Y. H. Kim, J. S. Lee, K. Y. Kim, Effect of chromium content on intergranular corrosion and precipitation of Ti-stabilized ferritic stainless steels, Corrosion Science, 52, 1847 (2010). Doi: https://doi.org/10.1016/j.corsci.2010.01.037
  21. Y. W. Chai, K. Kato, C. Yabu, S. Ishikawa, Y. Kimura, Disconnections and Laves (C14) precipitation in high-Cr ferritic stainless steels, Acta Materialia, 198, 230 (2020). Doi: https://doi.org/10.1016/j.actamat.2020.08.006
  22. M. P. Sello, W. E. Stumpf, Laves phase precipitation and its transformation kinetics in the ferritic stainless steel type AISI 441, Materials Science and Engineering A, 528, 1840 (2011). Doi: https://doi.org/10.1016/j.msea.2010.09.090
  23. H. P. Qu, Y. P. Lang, H. T. Chen, F. Rong, X. F. Kang, C. Q. Yang, H. B. Qin, The effect of precipitation on microstructure, mechanic properties and corrosion resistance of two UNS S44660 ferritic stainless steels, Materials Science and Engineering A, 534, 436 (2012). Doi: https://doi.org/10.1016/j.msea.2011.11.091
  24. D. H. Kim, K. C. Kim, J. H. Park, W. Chung, B. H. Shin, Microstructure and corrosion performance of high-entropy alloy and austenite and super duplex stainless steels in 3.5% NaCl solution, International Journal of Electrochemical Science, 18, 100074 (2023). Doi: https://doi.org/10.1016/j.ijoes.2023.100074
  25. K. Chan, S. Tjong, Effect of secondary phase precipitation on the corrosion behavior of duplex stainless steels, Materials, 7, 5268 (2014). Doi: https://doi.org/10.3390/ma7075268
  26. H. Sieurin, R. Sandstrom, Sigma phase precipitation in duplex stainless steel 2205, Materials Science and Engineering A, 444, 271 (2007). Doi: https://doi.org/10.1016/j.msea.2006.08.107
  27. C. S. Huang, C. C. Shih, Effects of nitrogen and high temperature aging on σ phase precipitation of duplex stainless steel, Materials Science and Engineering A, 402, 66 (2005). Doi: https://doi.org/10.1016/j.msea.2005.03.111
  28. A. J. Ramirez, J. C. Lippold, S. D. Brandi , The relationship between chromium nitride and secondary austenite precipitation in duplex stainless steels, Metallurgical and Materials Transactions A, 34, 157 (2003). Doi: https://doi.org/10.1007/s11661-003-0304-9
  29. X. Huang, D. Wang, Y. Yang, Effect of precipitation on intergranular corrosion resistance of 430 ferritic stainless steel, Journal of Iron and Steel Research International, 22, 1062 (2015). Doi: https://doi.org/10.1016/s1006-706x(15)30113-8
  30. S. Zhang, H. Li, Z. Jiang, Z. Li, J. Wu, B. Zhang, F. Duan, H. Feng, H. Zhu, Influence of N on precipitation behavior, associated corrosion and mechanical properties of super austenitic stainless steel S32654, Journal of Materials Science & Technology, 42, 143 (2020). Doi: https://doi.org/10.1016/j.jmst.2019.10.011
  31. K. T. Kim, S. B. Um, Y. S. Kim, Effect of heat treatment on the corrosion properties of seamless 304L stainless steel pipe, Corrosion Science and Technology, 16, 305 (2017). Doi: https://doi.org/10.14773/cst.2017.16.6.305
  32. Y. T. Jeon, Y. S. Kim, Y. S. Park, W. S. Ryu, J, H. Hong, Influences of aging heat treatment on the microstructure , mechanical properties , and corrosion resistance of Fe - Cr - Mn type stainless steels, Corrosion Science and Technology, 30, 61 (2001).
  33. Z. Y. Liu, F. Gao, L. Z. Jiang, G. D. Wang, The correlation between yielding behavior and precipitation in ultra purified ferritic stainless steels, Materials Science and Engineering A, 527, 3800 (2010). Doi: https://doi.org/10.1016/j.msea.2010.03.047
  34. Y. S. Kim, D. B. Mitton, R. M. Latanision, Corrosion resistance of stainless steels in chloride containing supercritical water oxidation system, Korean Journal of Chemical Engineering, 17, 58 (2000). Doi: https://doi.org/10.1007/bf02789254
  35. K. G. Kim, H. Y. Chang, Y. S. Kim, Effect of thermal history on pitting corrosion of high nitrogen and low molybdenum stainless steels, Corrosion Science and Technology, 2, 2, 75 (2003).
  36. ASTM G48, Standard test methods for pitting and crevice corrosion resistance of stainless steels and related alloys by use of ferric chloride solution, ASTM (2003).
  37. A. D. Warren, I. J. Griffiths, P. E. J. Flewitt, Precipitation within localised chromium-enriched regions in a Type 316H austenitic stainless steel, Journal of Materials Science, 53, 6183 (2018). Doi: https://doi.org/10.1007/s10853-017-1748-4
  38. D. M. Escriba, E. M. Morris, R. L. Plaut, A. F. Padilha, Chi-phase precipitation in a duplex stainless steel, Materials Characterization, 60, 1214 (2009). Doi: https://doi.org/10.1016/j.matchar.2009.04.013