DOI QR코드

DOI QR Code

Effects of Zn-Flash Coating on Hydrogen Evolution, Infusion, and Embrittlement of Advanced-High-Strength Steel During Electro-Galvanizing

Zn-Flash 코팅 처리가 전기아연도금 시 초고강도 강재의 수소 발생, 유입 및 취화 거동에 미치는 영향

  • Hye Rin Bang (Department of Advanced Materials Science and Engineering, Sunchon National University) ;
  • Sang Heon Kim (M.E.C. Co. LTD. Technical Research Laboratories) ;
  • Sung Jin Kim (Department of Advanced Materials Science and Engineering, Sunchon National University)
  • Received : 2023.08.25
  • Accepted : 2023.09.15
  • Published : 2023.10.30

Abstract

In the present study, effects of a thin Zn-flash coating on hydrogen evolution, infusion, and embrittlement of advanced high strength steel during electro-galvanizing were examined. The electrochemical permeation technique in conjunction with impedance spectroscopy was employed under applied cathodic polarization. Moreover, a slow-strain rate test was conducted to evaluate loss of elongation (i.e., indicative of hydrogen embrittlement (HE)) and examine fracture surfaces. Results showed that the presence of a thin Zn-flash coating, even when it was not distributed uniformly, reduced hydrogen evolution rate and substantially impeded infusion of hydrogen into the steel substrate. This was primarily due to a hydrogen overvoltage on Zn coating and trapping of hydrogen at the interface of Zn coating/flash coating/steel substrate. Consequently, the sample with flash coating had a smaller HE index than the sample without flash coating. These results suggest that a thin Zn-flash coating could be an effective technical strategy for mitigating HE in advanced high-strength steels.

Keywords

Acknowledgement

This result was supported by "Regional Innovation Strategy (RIS)" through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (MOE) (2021RIS-002). Also, this research was supported in part by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1A2C4001255).

References

  1. H. Gerengi, N. Sen, I. Uygur, and M. M. Solomon, Corrosion response of ultra-high strength steels used for automotive applications, Materials Research Express, 6, 0865a6 (2019). Doi: https://doi.org/10.1088/2053-1591/ab2178 
  2. N. Wint, J. Leung, J. H. Sullivan, D. J. Penney, and Y. Gao, The galvanic corrosion of welded ultra-high strength steels used for automotive applications, Corrosion Science, 136, 366 (2018). Doi: https://doi.org/10.1016/j.corsci.2018.03.025 
  3. J. Galan, L. Samek, P. Verleysen, K. Verbeken, and Y. Houbaert, Advanced high strength steels for automotive industry, Revista De Metalurgia, 48, 118 (2012). Doi: https://doi.org/10.3989/revmetalm.1158 
  4. K. Sadananda, J. H. Yang, N. Iyyar, N. Phan, and A. Rahman, Sacrificial Zn-Ni coatings by electroplating and hydrogen embrittlement of high-strength steels, Corrosion reviews, 39, 487 (2021). Doi: https://doi.org/10.1515/corrrev-2021-0038 
  5. D. H. Shim, T. Lee, J. Lee, H. J. Lee, J. Y. Yoo, and C. S. Lee, Increased resistance to hydrogen embrittlement in high-strength steels composed of granular bainite, Materials Science and Engineering: A, 700, 473 (2017). Doi: https://doi.org/10.1016/j.msea.2017.06.043 
  6. S. V. Brahimi, S. R. Sriraman, and S. Yue, Hydrogen embrittlement characteristics of two tempered martensitic steel alloys for high-strength bolting, Proceedings of the Institution of mechanical engineers, Part C: Journal of Mechanical Engineering Science, 231, 3214 (2017). Doi: https://doi.org/10.1177/0954406216642476 
  7. N. Eliaz, A. Shachar, B. Tal, and D. Eliezer, Characteristics of hydrogen embrittlement, stress corrosion cracking and tempered martensite embrittlement in high-strength steels, Engineering Failure Analysis, 9, 167 (2002). Doi: https://doi.org/10.1016/S1350-6307(01)00009-7 
  8. S. V. Brahimi, S. Yue, and K. R. Sriraman, Alloy and composition dependence of hydrogen embrittlement susceptibility in high-strength steel fasteners, Philosophical Transactions of the Royal Society A, 375, 20160407 (2017). Doi: https://doi.org/10.1098/rsta.2016.0407 
  9. H. R. Bang, J. S. Park, H. G. Seong, and S. J. Kim, Effect of minor alloying elements (C, Ni, Cr, Mo) on the long-term corrosion behaviors of ultrahigh-strength automotive steel sheet in neutral aqueous environment, Korean Journal of Metals and Materials, 60, 35 (2022). Doi: http://dx.doi.org/10.3365/KJMM.2022.60.1.35 
  10. K. D. Chang, J. L. Gu, H. S. Fang, Z. G. Yang, B. Z. Bai, and W. Z. Zhang, Effects of heat-treatment process of a novel bainite-martensite dual-phase high strength steel on its susceptibility to hydrogen embrittlement, ISIJ International, 41, 1397 (2001). Doi: http://dx.doi.org/10.2355/isijinternational.41.1397 
  11. H. Zhao, P. Wang, and J. Li, Effect of vanadium content on hydrogen embrittlement of 1400 MPa grade high strength bolt steels, International Journal of Hydrogen Energy, 46, 34983 (2021). Doi: https://doi.org/10.1016/j.ijhydene.2021.08.060 
  12. S. M. A. Shibli, B. N. Meena, and R. Remya, A review on recent approaches in the field of hot dip galvanizing process, Surface and Coatings Technology, 262, 210 (2015). Doi: https://doi.org/10.1016/j.surfcoat.2014.12.054 
  13. N. Pistofidis, G. Vourlias, S. Konidaris, E. Pavlidou, A. Stergiou, and G. Stergioudis, Microstructure of zinc hotdip galvanized coatings used for corrosion protection, Materials Letters, 60, 786 (2006). Doi: https://doi.org/10.1016/j.matlet.2005.10.013 
  14. D. H. Coleman, G. Zheng, B. N. Popov, and R. E. White, The effects of multiple electroplated zinc layer on the inhibition of hydrogen permeation through an iron membrane, Journal of the Electrochemical Society, 143, 1871 (1996). Doi: https://doi.org/10.1149/1.1836917\
  15. M. Hino, S. Mukai, T. Shimada, K. Okada, and K. Horikawa, Effect of baking on hydrogen embrittlement for high strength steel treated with various zinc based electroplating from sulfate bath, Materials Transactions, 61, 2302, (2020). Doi: https://doi.org/10.2320/matertrans.MT-M2020245 
  16. E. M. K. Hiller and M. J. Robinson, Hydrogen embrittlement of high strength steel electroplated with zinc-cobalt alloys, Corrosion Science, 46, 715 (2004). Doi: https://doi.org/10.1016/S0010-938X(03)00180-X 
  17. T. Casanova, F. Soto, M. Eyraud, and J. Crousier, Hydrogen absorption during zinc plating on steel, Corrosion Science, 39, 529 (1997). Doi: https://doi.org/10.1016/S0010-938X(97)86101-X 
  18. H. Kancharla, G. K. Mandal, S. S. Singh, and K. Mondal, Effects of prior copper-coating on the microstructural development and corrosion behavior of hot-dip galvanized Mn containing high strength steel sheet, Surface and Coatings Technology, 437, 128347 (2022). Doi: https://doi.org/10.1016/j.surfcoat.2022.128347 
  19. A. Charkraborty, A. Mondal, S. Bysakh, M. Dutta, and S. B. Singh, Microstructural investigation of galvanized coatings with prior flash coating of copper on DP steels, Surface and Coatings Technology, 285, 220 (2016). Doi: https://doi.org/10.1016/j.surfcoat.2015.11.043 
  20. K. Sarkar, A. Mondal, A. Chakraborty, M. Sanbui, N. Rani, and M. Dutta, Investigation of microstructure and corrosion behaviour of prior nickel deposited galvanized steels, Surface and Coatings Technology, 348, 64 (2018). Doi: https://doi.org/10.1016/j.surfcoat.2018.05.036 
  21. Y. J. Kwak and M. S. Kim, Effect of impurities during nickel flash coating on phosphate film in sulfate bath, Journal of Corrosion Science Society of Korea, 27, 75 (1998). 
  22. H. R. Bang, J. S. Park, S. H. Kim, M. S. Oh, and S. J. Kim, Effects of applied cathodic current on hydrogen infusion, embrittlement, and corrosion-induced hydrogen embrittlement behaviors of ultra-high strength steel for automotive application, Korean Journal of Metals and Materials, 61, 145 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.3.145 
  23. P. Scherrer, Bestimmung der Grosse und der inneren Struktur von Kolloidteilchen Mittels Rontgenstrahlen Nachrichten von der Gesellschaft der Gottingen Wissenschaften, Gottingen, Mathematisch-Physikalische Klasse, 2, 98 (1918). 
  24. ISO 17081, Method of measurement of hydrogen permeation and determination of hydrogen uptake and transport in metals by an electrochemical technique (2004). 
  25. M. A. V. Devanathan and Z. Stachurski, The adsorption and diffusion of electrolytic hydrogen in palladium, Proceedings of the Royal Society of London Series A, 270, 90 (1962). Doi: https://doi.org/10.1098/rspa.1962.0205 
  26. J. S. Park, E. H. Hwang, M. J. Lee, and S. J. Kim, Effect of tempering condition on hydrogen diffusion behavior of martensitic high-strength steel, Corrosion Science and Technology, 17, 242 (2018). Doi: http://dx.doi.org/10.14773/cst.2018.17.5.242 
  27. J. S. Park, D. B. Yun, H. G. Seong, and S. J. Kim, Effect of ε-carbide (Fe2.4C) on corrosion and hydrogen diffusion behaviors of automotive ultrahigh-strength steel sheet, Corrosion Science and Technology, 20, 295 (2021). Doi: https://doi.org/10.14773/cst.2021.20.5.295 
  28. A. Chakraborty, M. Manna, A. Pandey, and M. Dutta, Development of an improved tube galvanizing process by prior metallic coating, Journal of Materials Processing Technology, 213, 1501 (2013). Doi: https://doi.org/10.1016/j.jmatprotec.2013.03.016 
  29. M. Manna and M. Dutta, Improvement in galvanization and galvannealing characteristics of DP 590 steel by prior Cu or Cu-Sn flash coating, Surface and Coatings Technology, 251, 29 (2014). Doi: https://doi.org/10.1016/j.surfcoat.2014.03.065 
  30. K. Hirata, S. Likubo, M. Koyama, K. Tsuzaki, and H. Ohtani, First-principles study on hydrogen diffusivity in BCC, FCC, and HCP iron, Metallurgical and Materials Transactions A, 49, 5015 (2018). Doi: https://doi.org/10.1007/s11661-018-4815-9 
  31. H. R. Bang, J. S. Park, and S. J. Kim, Effects of Ni-flash coating on hydrogen evolution, ad/absorption, and permeation behaviors of advanced high-strength steel during electro-Zn plating, Journal of Electroanalytical Chemistry, 944, 117653 (2023). Doi: https://doi.org/10.1016/j.jelechem.2023.117653 
  32. J. N. Han, S. I. Pyun, and T. H. Yang, Roles of thiourea as an inhibitor in hydrogen absorption into palladium electrode, Journal of the Electrochemical Society, 144, 4266 (1997). Doi: https://doi.org/10.1149/1.1838176 
  33. X. L. Xiong, H. X. Ma, X. Tao, J. X. Li, Y. J. Su, Q. J. Zhou, and A. A. Volinsky, Hydrostatic pressure effects on the kinetic parameters of hydrogen evolution and permeation in Armco iron, Electrochimica Acta, 255, 230 (2017). Doi: https://doi.org/10.1016/j.electacta.2017.09.181 
  34. F. Bao, E. Kemppainen, I. Dorbandt, R. Bors, F. Xi, R. Schlatmann, R. V. D. Krol, and S. Calnan, Understanding the hydrogen evolution reaction kinetics of electrodeposited nickel-molybdenum in acidic, near-neutral, and alkaline conditions, ChemElecteoChem, 8, 195 (2021). Doi: https://doi.org/10.1002/celc.202001436 
  35. X. Tao, L. Zhang, H. Ma, X. Xiong, and Y. Su, Carbon influence on hydrogen absorption and adsorption on FeC alloy surfaces, Surface Science, 697, 121606 (2020). Doi: https://doi.org/10.1016/j.susc.2020.121606 
  36. B. Losiewicz and A. Lasia, Study of the hydrogen absorption/diffusion in Pd80Rh20 alloy in acidic solution, Journal of Electroanalytical Chemistry, 822, 153 (2018). Doi: https://doi.org/10.1016/j.jelechem.2018.05.025 
  37. T. H. Yang and S. I. Pyun, An investigation of the hydrogen absorption reaction into, and the hydrogen evolution reaction from, a Pd foil electrode, Journal of Electroanalytical Chemistry, 414, 127 (1996). Doi: https://doi.org/10.1016/0022-0728(96)04666-9