DOI QR코드

DOI QR Code

Effect of Solution Annealing Heat Treatment on the Localized Corrosion Resistance of Inconel 718

Inconel 718의 국부 부식 저항성에 미치는 용체화 열처리의 영향

  • Yoonhwa Lee (Materials Convergence and System Engineering, Changwon National University) ;
  • Jun-Seob Lee (Materials Convergence and System Engineering, Changwon National University) ;
  • Soon Il Kwon (R&D Center, SeAH CSS corporation) ;
  • Jungho Shin (R&D Center, SeAH CSS corporation) ;
  • Je-hyun Lee (Materials Convergence and System Engineering, Changwon National University)
  • 이윤화 (국립창원대학교 소재융합시스템공학부) ;
  • 이준섭 (국립창원대학교 소재융합시스템공학부) ;
  • 권순일 (세아창원특수강 기술연구소) ;
  • 신정호 (세아창원특수강 기술연구소) ;
  • 이재현 (국립창원대학교 소재융합시스템공학부)
  • Received : 2023.10.17
  • Accepted : 2023.10.24
  • Published : 2023.10.30

Abstract

The localized corrosion resistance of the Ni-based Inconel 718 alloy after solution heat treatment was evaluated using electrochemical techniques in a solution of 25 wt% NaCl and 0.5 wt% acetic acid. Solution heat treatment at 1050 ℃ for 2.5 hours resulted in an increased average grain diameter. Both Ti carbides (10 ㎛ diameter) and Nb-Mo carbides (1 - 9 ㎛ diameter) were distributed throughout the material. Despite heat treatment, the shape and composition of these carbides remained consistent. An increase in solution temperature led to a decrease in pitting potential value. However, the pitting potential value of solution heat-treated Inconel 718 was consistently higher than that of as-received Inconel 718 at all tested temperatures. Localized corrosion initiation occurred at 0.4 VSSE in a temperature environment of 80 ℃ for both as-received and solution heat-treated Inconel 718 alloys. X-ray photoelectron spectroscopic analysis indicated that the composition of the passive film formed on specimen surfaces remained largely unchanged after solution heat treatment, with O1s, Cr2p3/2, Fe2p3/2, and Ni2p3/2 present. The difference in localized corrosion resistance between as-received and solution heat-treated Inconel 718 alloys was attributable to microstructural changes induced by the heat treatment process.

Keywords

Acknowledgement

이 논문은 2023 ~ 2024년도 창원대학교 자율연구과제 연구비 지원으로 수행된 연구결과임.

References

  1. C. M. Kuo, Y. T. Yang, H. Y. Bor, C. N. Wei, and C. C. Tai, Aging effects on the microstructure and creep behavior of Inconel 718 superalloy, Materials Science and Engineering: A, 510, 289 (2009). Doi: https://doi.org/10.1016/j.msea.2008.04.097
  2. D. Deng, Additively Manufactured Inconel 718: Microstructures and Mechanical Properties (Vol. 1798). Linkoping University Electronic Press (2018).
  3. T. F. Wu, T. S. Chen, and W. T. Tsai, Effect of precipitate on the electrochemical potentiokinetic reactivation behaviors of stainless steels and nickel base alloys, Corrosion Science and Technology, 2, 59 (2003). https://www.j-cst.org/data/issue/CST/C000202/C00020200059.pdf
  4. J. H. Shin, and K. M. Moon, An Electrochemical Evaluation on the Corrosion Resistance of Welding Zone due to Kinds of Repair Welding Filler Metals and Post Weld Heat Treatment, Corrosion Science and Technology, 9, 310 (2010). Doi: https://doi.org/10.14773/cst.2010.9.6.310
  5. N. Khanna, C. Agrawal, M. K. Gupta, and Q. Song, Tool wear and hole quality evaluation in cryogenic Drilling of Inconel 718 superalloy, Tribology International, 143, 106084 (2020). Doi: https://doi.org/10.1016/j.triboint.2019.106084
  6. B. Zhang, M. Xiu, Y. T. Tan, J. Wei, and P. Wang, Pitting corrosion of SLM Inconel 718 sample under surface and heat treatments, Applied Surface Science, 490, 556 (2019). Doi: https://doi.org/10.1016/j.apsusc.2019.06.043
  7. M. Gao, and R. P. Wei, Grain boundary niobium carbides in Inconel 718, Scripta Materialia, 37, 1843 (1997). Doi: https://doi.org/10.1016/S1359-6462(97)00373-4
  8. G. A. Rao, M. Kumar, M. Srinivas, and D. S. Sarma, Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, Materials Science and Engineering: A, 355, 114 (2003). Doi: https://doi.org/10.1016/S0921-5093(03)00079-0
  9. J. Rosenberg, J. Klower, J. Groth, C. Bosch, and G. Genchev, Effect of heat treatment on mechanical properties and corrosion resistance of Nickel Alloy UNS N07718-140 ksi and 150 ksi grades, NACE CORROSION, NACE, 10650 (2018).
  10. R. Rebak, M. Rincon-Ortiz, M. Iannuzzi, M. Kappes, A. Mishra, and M. Rodriguez, Effect of thermal treatment on the localized corrosion behavior of alloy 718 (UNS N07718), EUROCORR (2014).
  11. L. C. M. Valle, A. I. C. Santana, M. C. Rezende, J. Dille, O. R. Mattos, and L. H. de Almeida, The influence of heat treatments on the corrosion behaviour of nickel-based alloy 718, Journal of Alloys and Compounds, 809, 151781 (2019). Doi: https://doi.org/10.1016/j.jallcom.2019.151781
  12. S. Rahman, G. Priyadarshan, K. S. Raja, C. Nesbitt, and M. Misra, Investigation of the secondary phases of alloy 617 by scanning kelvin probe force microscope, Materials Letters, 62, 2263 (2008). Doi: https://doi.org/10.1016/j.matlet.2007.11.077
  13. J.-S. Lee, Y. J. Lee, S. I. Kwon, J. Shin, and J.-H. Lee, Localized Corrosion Behavior of Inconel 718 in a Chloride-Containing Aqueous Solution, Corrosion Science and Technology, 20, 361 (2021). Doi: https://doi.org/10.14773/cst.2021.20.6.361
  14. Y. J. Lee, J.-S. Lee, J. Shin, Y. T. Cho, S. Kim, and J. H. Lee, Localized Corrosion Behavior of UNS N07718 in a Solution Simulating a Diluted-sour Environment, Korean Journal of Metals and Materials, 61, 553 (2023). Doi: http://dx.doi.org/10.3365/KJMM.2023.61.8.553
  15. ASTM E112-96, ASTM, E. 9, Standard test methods for determining average grain size, ASTM International, West Conshohocken, PA, USA (2004)
  16. TM0177, N. A. C. E., Laboratory testing of metals for resistance to sulfide stress cracking and stress corrosion cracking in H2S environments. Houston, Tx: NACE (2005).
  17. L. C. M. Valle, L. S. Araujo, S. B. Gabriel, J. Dille, and L. H De Almeida, The effect of δ phase on the mechanical properties of an Inconel 718 superalloy, Journal of materials engineering and performance, 22, 1512 (2013). Doi: https://doi.org/10.1007/s11665-012-0433-7
  18. G. K. Dosbaeva, S. C. Veldhuis, A. Elfizy, G. Fox-Rabinovich, and T. Wagg, Microscopic observations on the origin of defects during machining of direct aged (DA) Inconel 718 superalloy, Journal of Materials Engineering and Performance, 19, 1193 (2010). Doi: https://doi.org/10.1007/s11665-009-9587-3
  19. M. Gojic, D. Marijan, and L. Kosec, Electrochemical behavior of duplex stainless steel in borate buffer solution, Corrosion, 56, 839 (2000). Doi: https://doi.org/10.5006/1.3280587
  20. P. E. Manning, and J. Duquette, The effect of temperature (25°-289 ℃) on pit initiation in single phase and duplex 304L stainless steels in 100 ppm Cl- solution, Corrosion Science, 20, 597 (1980). Doi: https://doi.org/10.1016/0010-938X(80)90074-8
  21. G. T. Burstein, and A. J. Davenport, The current-time relationship during anodic oxide film growth under high electric field, Journal of the Electrochemical Society, 136, 936 (1989). Doi: https://doi.org/10.1149/1.2096890
  22. C. T. Sims, N. S. Stoloff, and W. C. Hagel (Eds.)., super-alloys II (Vol. 8), John Wiley & Sons, NY (1987).
  23. R. Devaux, D. Vouagner, A. M. De Becdelievre, and C. Duret-Thual, Electrochemical and surface studies of the ageing of passive layers grown on stainless steel in neutral chloride solution, Corrosion Science, 36, 171 (1994). Doi: https://doi.org/10.1016/0010-938X(94)90118-X
  24. T. L. Barr, An ESCA study of the termination of the passivation of elemental metals, The Journal of Physical Chemistry, 82, 1801 (1978). Doi: https://doi.org/10.1021/j100505a006
  25. B. Stypula, and J. Stoch, The characterization of passive films on chromium electrodes by XPS, Corrosion Science, 36, 2159 (1994). Doi: https://doi.org/10.1016/0010-938X(94)90014-0
  26. A. M. Beccaria, G. Poggi, and G. Castello, Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water, British Corrosion Journal, 30, 283 (1995). Doi: https://doi.org/10.1179/bcj.1995.30.4.283
  27. P. T. Andrews, T. Collins, and P. Weightman, The influence of the number of unoccupied 3d states on the L3M4, 5M4, 5 Auger spectrum of Ni, Journal of Physics C: Solid State Physics, 14, L957 (1981). Doi: http://dx.doi.org/10.1088/0022-3719/14/31/006
  28. V. V. Nemoshkalenko, V. V. Didyk, V. P. Krivitskii, and A. I. Senkevich, Study of the charge state of atoms in iron, cobalt and nickel phosphides, Zhurnal neorganicheskoi khimii, 28, 2182 (1983).
  29. P. Marcus, and J. M. Grimal, The anodic dissolution and passivation of Ni-Cr-Fe alloys studied by ESCA, Corrosion Science, 33, 805 (1992). Doi: https://doi.org/10.1016/0010-938X(92)90113-H
  30. N. S. McIntyre, and M. G. Cook, X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper, Analytical Chemistry, 47, 2208 (1975). Doi: https://doi.org/10.1021/ac60363a034
  31. S. Jin, and A. Atrens, ESCA-studies of the structure and composition of the passive film formed on stainless steels by various immersion times in 0.1 M NaCl solution, Applied Physics A, 42, 149 (1987). Doi: https://doi.org/10.1007/BF00616726
  32. A. S. Lim, and A. Atrens, ESCA studies of nitrogen-containing stainless steels, Applied Physics A, 51, 411 (1990). Doi: https://doi.org/10.1007/BF00348382
  33. S. Azadian, L. Y. Wei, and R. Warren, Delta phase precipitation in Inconel 718, Materials Characterization, 53, 7 (2004). Doi: https://doi.org/10.1016/j.matchar.2004.07.004