DOI QR코드

DOI QR Code

Analysis of Corrosion Resistance and Dew Point with Exhaust Gas Concentration and Temperature for Air Preheater Materials in Power Plants

발전소 공기예열기 소재의 배기가스 농도 및 온도에 따른 내식성 및 노점 분석

  • Seung-Jun Lee (Division of Marine Engineering, Kunsan National University)
  • 이승준 (군산대학교 ONSE대학 기관공학전공)
  • Received : 2023.10.10
  • Accepted : 2023.10.17
  • Published : 2023.10.30

Abstract

Although many thermal power plants use heat recovery systems, high exhaust gas temperatures are maintained due to corrosion at dew points and ash deposits caused by condensate formation. The dew point of exhaust gas is primarily determined by the concentration of SO3 and steam, and various experiments and calculation equations have been employed to estimate it. However, these methods are known to be less suitable for exhaust gases with low SO3 concentrations. Therefore, in this study, since the temperature of the exhaust gas is expected to decrease due to the low-load operation of the coal-fired power plant, sulfuric acid condensation and low-temperature corrosion are anticipated. We aimed to conduct a quantitative evaluation to propose ways to prevent damage by limiting operating conditions and improving facilities. The experimental results showed that the corrosion rate increased linearly with rising temperatures at a certain sulfuric acid concentration. Furthermore, variations in sulfuric acid concentrations generated during the current power plant operation process did not significantly affect the dew point, and the dew point of sulfuric acid under these conditions was observed to be between 120 - 130 ℃.

Keywords

References

  1. H. Zhang and J. Zhuang, Research of Development and Industrial Application of Heat Pipe Technology in China, Appled Thermal Engineering, 23, 1067 (2003). Doi: https://doi.org/10.1016/S1359-4311(03)00037-1
  2. X. Q. Cheng, F. L. Sun, S. J. Lv, and X. G. Li, A New Steel with Good Low-Temperature Sulfuric Acid Dew Point Corrosion Resistance, Materials and Corrosion, 63, 598 (2012). Doi: https://doi.org/10.1002/maco.201006046
  3. Z. Y. Liang and Q. X. Zhao, Failure Analysis of Spiral Finned Tube on the Economizer, Engineering Failure Analysis, 28, 208 (2013). Doi: https://doi.org/10.1016/j.engfailanal.2012.10.010
  4. J. Zhang, Discriminate and Discuss on Some Mistake Region and Doubtful Point Where the Gas Acid Dew Point Calculating Methods had be Studies, Boiler Technology, 44, 10 (2013).
  5. K. Ceng, J. Fan, Z. Chi, and L. Shen, The Prevention Principle and Calculation of Fouling, Slagging, Wear and Corrosion of Boiler and Heat Exchanger, Science Press, 381 (1994).
  6. D. Fleig, M. U. Alzueta, F. Normann, M. Abian, K. Andersson, and F. Johnsson, Measurement and Modeling of Sulfur Trioxide Formation in a Flow Reactor under Post-Flame Conditions, Combustion and Flame, 160, 1142 (2013). Doi: https://doi.org/10.1016/j.combustflame.2013.02.002
  7. T. L. Jorgensen, H. Livbjerg, and P. Glarborg, Homogeneous and Heterogeneously Catalyzed Oxidation of SO2, Chemical Engineering Science, 62, 4496 (2007). Doi: https://doi.org/10.1016/j.ces.2007.05.016
  8. G. Whittingham, The Corrosive Nature of Combustion Gases, Anti-Corrosion Methods and Materials, 1, 182 (1954). Doi: https://doi.org/10.1108/eb018949
  9. D. R. Holmes, Low-Temperature Corrosion, Institute of Corrosion Science and technology, Birmingham (1985).
  10. D. Lampert, Low-Temperature Corrosion in Feed-Heaters Heated by Flue Gas, Brown Bover. Rev., 65, 691 (1978).
  11. F. Barreras and J. Barroso, Behavior of a High-Capacity Steam Boiler using Heavy Fuel Oil Part II: Cold-End Corrosion, Fuel Processing Technology, 86, 107 (2004). Doi: https://doi.org/10.1016/j.fuproc.2003.12.005
  12. H. Han, Y. L. He, and W. Q. Tao, A Numerical Study of the Deposition Characteristics of Sulfuric Acid Vapor on Heat Exchanger Surfaces, Chemical Engineering Science, 101, 620 (2013). Doi: https://doi.org/10.1016/j.ces.2013.07.024
  13. Z. M. Li, F. Z. Sun, and Y. T. Shi, Experimental Study and Mechanism Analysis on Low Temperature Corrosion of Coal Fired Boiler Heating Surface, Applied Thermal Engineering, 80, 355 (2015). Doi: https://doi.org/10.1016/j.applthermaleng.2015.02.003
  14. M. Y. Park, J. S. Moon and D. J. Kang, The Corrosion Inhibition Characteristics of Sodium Nitrite Using an Online Corrosion Rate Measurement System, Corrosion Science and Technology, 14, 85 (2015). Doi: https://doi.org/10.14773/cst.2015.14.2.85
  15. J. S. Moon, J. K. Lee, J. B. Lee and P. Y. Park, Study on an On-line Measurement System of Corrosion Rate by Linear Polarization Resistance, Corrosion Science and Technology, 11, 135 (2012). Doi: https://doi.org/10.14773/cst.2012.11.4.135
  16. Y. G. Kim, S. W. Jung, H. S. Song, S. M. Lee and Y. T. Kho, Corrosion Rate Measurement Technique with Thin Film Electric Resistance Sensor, Corrosion Science and Technology, 1, 315 (2002). https://www.j-cst.org/opensource/pdfjs/web/pdf_viewer.htm?code=C00010400315 10400315
  17. M. B. Rockel and R. Bender, Corrosion Handbook, Society for Chemical Engineering and Biotechnology, Frankfurt, Germany (2008).
  18. M. A. Quraishi and S. Khan, Inhibition of Mild Steel Corrosion in Sulfuric Acid Solution by Thiadiazoles, Journal of Applied Electrochemistry, 36, 539 (2006). Doi: https://doi.org/10.1007/s10800-005-9087-6
  19. M. Cherif, A. Mgaidi, M. N. Ammar, M. Abderrabba, and W. Furst, Representation of VLE and Liquid Phase Composition with an Electrolyte Model, Fluid Phase Equilibria, 194, 729 (2002). Doi: https://doi.org/10.1016/S0378-3812(01)00688-4