DOI QR코드

DOI QR Code

Thermally reused solar energy harvesting using current mirror cells

  • Mostafa Noohi (Department of Electrical Engineering, Yazd University) ;
  • Ali Mirvakili (Department of Electrical Engineering, Yazd University) ;
  • Hadi Safdarkhani (Department of Electrical Engineering, Yazd University) ;
  • Sayed Alireza Sadrossadat (Department of Computer Engineering, Yazd University)
  • Received : 2022.01.20
  • Accepted : 2022.09.08
  • Published : 2023.06.20

Abstract

This paper implements a simultaneous solar and thermal energy harvesting system, as a hybrid energy harvesting (HEH) system, to convert ambient light into electrical energy through photovoltaic (PV) cells and heat absorbed in the body of PV cells. Indeed, a solar panel equipped with serially connected thermoelectric generators not only converts the incoming light into electricity but also takes advantage of heat emanating from the light. In a conventional HEH system, the diode block is used to provide the path for the input source with the highest value. In this scheme, at each time, only one source can be handled to generate its output, while other sources are blocked. To handle this challenge of combining resources in HEH systems, this paper proposes a method for collecting all incoming energies and conveying its summation to the load via the current mirror cells in an approach similar to the maximum power point tracking. This technique is implemented using off-the-shelf components. The measurement results show that the proposed method is a realistic approach for supplying electrical energy to wireless sensor nodes and low-power electronics.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support from Ministry of Science, Research, and Technology as well as the Information and Communication Technology Park, Iran, for this project under grant number 32-00-01-000456.

References

  1. Y. Chen, Communications, energy harvesting: principles and theories, John Wiley and Sons, 2019.
  2. S. M. Demir, F. Al-Turjman, and A. Muhtarolu, Energy scavenging methods for WBAN applications: A review, IEEE Sensors J. 18 (2018), no. 16, 6477-6488. https://doi.org/10.1109/JSEN.2018.2851187
  3. S. E. Moon, Sustainable vibration energy harvesting based on Zr doped PMN-PT piezoelectric single crystal cantilevers, ETRI J. 31 (2009), no. 6, 688-694. https://doi.org/10.4218/etrij.09.1209.0015
  4. M. Dezyani, H. Ghafoorifard, S. Sheikhaei, and W. A. Serdijn, A 60 mV input voltage, process tolerant start-up system for thermoelectric energy harvesting, IEEE Trans. Circ. Syst. I: Reg. Pap. 65 (2018), no. 10, 3568-3577. https://doi.org/10.1109/TCSI.2018.2834312
  5. R. Ibrahim, T. D. Chung, S. M. Hassan, K. Bingi, and S. K. Salahuddin, Solar energy harvester for industrial wireless sensor nodes, Procedia Comput. Sci. 105 (2017), 111-118. https://doi.org/10.1016/j.procs.2017.01.184
  6. Y. K. Tan, Energy harvesting autonomous sensor systems: design, analysis, and practical implementation, CRC Press, 2013.
  7. M. Piuela, P. D. Mitcheson, and S. Lucyszyn, Ambient RF energy harvesting in urban and semi-urban environments, IEEE Trans. Microw. Theory Tech. 61 (2013), no. 7, 2715-2726. https://doi.org/10.1109/TMTT.2013.2262687
  8. S. E. Moon, Sustainable vibration energy harvesting based on Zr-doped PMN-PT piezoelectric single crystal cantilevers, ETRI J. 31 (2009), no. 6, 688-694. https://doi.org/10.4218/etrij.09.1209.0015
  9. S. Kosunalp, MAC protocols for energy harvesting wireless sensor networks: Survey, ETRI J. 37 (2015), no. 4, 804-812. https://doi.org/10.4218/etrij.15.0115.0017
  10. N. Rouibah, L. Barazane, M. Benghanem, and A. Mellit, IoTbased low-cost prototype for online monitoring of maximum output power of domestic photovoltaic systems, ETRI J. 43 (2021), no. 3, 459-470. https://doi.org/10.4218/etrij.2019-0537
  11. J. Yan, X. Liao, S. Ji, and S. Zhang, A novel multi-source micro power generator for harvesting thermal and optical energy, IEEE Electr. Device Lett. 40 (2018), no. 2, 349-352.
  12. R. Komiyama and Y. Fujii, Analysis of energy saving and environmental characteristics of electric vehicles in regionally disaggregated world energy model, Electr. Eng. Japan 186 (2014), no. 4, 20-36. https://doi.org/10.1002/eej.22373
  13. R. Torah, P. Glynne-Jones, M. Tudor, T. O'donnell, S. Roy, and S. Beeby, Self-powered autonomous wireless sensor node using vibration energy harvesting, Meas Sci Technol 19 (2008), no. 12, 125202.
  14. S. Heo, Y. S. Yang, J. Lee, S. k. Lee, and J. Kim, Efficient maximum power tracking of energy harvesting using a μcontroller for power savings, ETRI J. 33 (2011), no. 6, 973-976.
  15. Y. Tadesse, S. Zhang, and S. Priya, Multimodal energy harvesting system: Piezoelectric and electromagnetic, J. Intell. Mater. Syst. Struct. 20 (2009), no. 5, 625-632. https://doi.org/10.1177/1045389X08099965
  16. A. Khaligh, P. Zeng, and C. Zheng, Kinetic energy harvesting using piezoelectric and electromagnetic technologies state of the art, IEEE Trans. Ind. Electr. 57 (2009), no. 3, 850-860.
  17. N. J. Guilar, T. J. Kleeburg, A. Chen, D. R. Yankelevich, and R. Amirtharajah, Integrated solar energy harvesting and storage, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 17 (2009), no. 5, 627-637. https://doi.org/10.1109/TVLSI.2008.2006792
  18. H. Lhermet, C. Condemine, M. Plissonnier, R. Salot, P. Audebert, and M. Rosset, Efficient power management circuit: From thermal energy harvesting to above-IC microbattery energy storage, IEEE J. Solid-State Circuits 43 (2008), no. 1, 246-255. https://doi.org/10.1109/JSSC.2007.914725
  19. T. N. T. Mohamad, J. Sampe, and D. D. Berhanuddin, Architecture of micro energy harvesting using hybrid input of RF, thermal and vibration for semi-active RFID tag, Eng. J. 21 (2017), no. 2, 183-197.
  20. W.-K. Lee, M. J. Schubert, B.-Y. Ooi, and S. J.-Q. Ho, Multisource energy harvesting and storage for floating wireless sensor network nodes with long range communication capability, IEEE Trans. Ind. Appl. 54 (2018), no. 3, 2606-2615. https://doi.org/10.1109/TIA.2018.2799158
  21. Y. K. Tan and S. K. Panda, Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes, IEEE Trans. Ind. Electron. 58 (2010), no. 9, 4424-4435.
  22. T. Kang, S. Kim, C. Hyoung, S. Kang, and K. Park, An energy combiner for a multi-input energy-harvesting system, IEEE Trans. Circ. Syst. II: Express Briefs 62 (2015), no. 9, 911-915.
  23. D. Altinel and G. K. Kurt, Modeling of multiple energy sources for hybrid energy harvesting IoT systems, IEEE Internet Things J. 6 (2019), no. 6, 10846-10854.
  24. T. Tanaka, T. Aonuma, K. Natori, and Y. Sato, Rectification methods to increase harvested energy in vibration generation using piezoelectric elements, Electr. Eng. Japan 199 (2017), no. 3, 68-79. https://doi.org/10.1002/eej.22958
  25. F. Deng, X. Yue, X. Fan, S. Guan, Y. Xu, and J. Chen, Multisource energy harvesting system for a wireless sensor network node in the field environment, IEEE Internet Things J. 6 (2018), no. 1, 918-927.
  26. I. G. Zurbriggen and M. Ordonez, PV energy harvesting under extremely fast changing irradiance: State-plane direct MPPT, IEEE Trans. Ind. Electron. 66 (2018), no. 3, 1852-1861.
  27. A. Decker, Solar energy harvesting for autonomous field devices, IET Wireless Sensor Syst. 4 (2013), no. 1, 1-8.
  28. S. Sharma, K. K. Jain, and A. Sharma, Solar cells: in research and applications: A review, Mater. Sci. Appl. 6 (2015), no. 12, 1145.
  29. T. Esram and P. L. Chapman, Comparison of photovoltaic array maximum power point tracking techniques, IEEE Trans. Energy Convers. 22 (2007), no. 2, 439-449.
  30. M. Dezyani, H. Ghafoorifard, S. Sheikhaei, and W. A. Serdijn, A 60 mV input voltage, process tolerant start-up system for thermoelectric energy harvesting, IEEE Trans. Circ. Syst. I: Reg. Pap. 65 (2018), no. 10, 3568-3577. https://doi.org/10.1109/TCSI.2018.2834312
  31. J. Kim, Dynamic reconfiguration of thermoelectric generators for vehicle radiators energy harvesting under location-dependent temperature variations, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 26 (2018), no. 7, 1241-1253. https://doi.org/10.1109/TVLSI.2018.2812705
  32. L. Sigrist, N. Stricker, D. Bernath, J. Beutel, and L. Thiele, Thermoelectric energy harvesting from gradients in the Earth surface, IEEE Trans. Ind. Electron. 67 (2019), no. 11, 9460-9470.
  33. D. Enescu, Thermoelectric energy harvesting: Basic principles and applications, Green Energy Advances, London, United Kingdom, IntechOpen, (2019). https://www.intechopen.com/ chapters/65239, https://doi.org/10.5772/intechopen.83495
  34. Y. Wu, Thermoelectric Energy Harvesting for Sensor Powering Virginia Tech, 2019.
  35. J. Yan, X. Liao, D. Yan, and Y. Chen, Review of micro thermoelectric generator, J. Microelectromech. Syst. 27 (2018), no. 1, 1-18. https://doi.org/10.1109/JMEMS.2017.2782748
  36. R. W. Erickson and D. Maksimovic, Fundamentals of power electronics, Springer Science and Business Media, 2007.
  37. W.-Z. Zhang, H.-P. Lin, Y. Zhang, and J.-M. Jin, Modeling and controlling strategy of four-switch buck-boost convertor with smooth mode transitions, Open Electr. Electr. Eng. J. 11 (2017), 1.
  38. J.-H. Park, H. Kim, and H.-J. Kim, A current-mode non-inverting CMOS buck-boost DC-DC converter (INTELEC 2009-31st International Telecommunications Energy Conference, Incheon, Rep. of Korea), 2009.
  39. A. Uemi, S. Hino, and Y. Masui, Low-voltage charge pump circuit with double boost technique, Electr. Eng. Japan 213 (2020), no. 1-4, 24-32. https://doi.org/10.1002/eej.23281
  40. V. Choudhary, T. Hegarty, and D. Pace, Under the hood of a non-inverting buck-boost converter in Texas Instruments Power Supply Design Seminar, 2017.
  41. K. Kubota and M. Okine, Realization of a multiport gyrator using current mirror circuits, Electr. Eng. Japan 139 (2002), no. 4, 41-47. https://doi.org/10.1002/eej.1167
  42. B. Razavi, Design of analog CMOS integrated circuits, Second edition, McGraw-Hill Education, 2017.
  43. X. Yue, J. Kiely, D. Gibson, and E. M. Drakakis, Charge-Based supercapacitor storage estimation for indoor sub-mW Photovoltaic energy harvesting powered wireless sensor nodes, IEEE Trans. Ind. Electr. 67 (2020), no. 3, 2411-2421. https://doi.org/10.1109/TIE.2019.2896321
  44. J. Nunez Forestieri and M. Farasat, Integrative sizing/real-time energy management of a hybrid supercapacitor/undersea energy storage system for grid integration of wave energy conversion systems, IEEE J. Emerg. Sel. Top. Power Electr. 8 (2020), no. 4, 3798-3810. https://doi.org/10.1109/JESTPE.2019.2926061
  45. S. Lee and J. Kim, Power capability analysis of lithium battery and supercapacitor by pulse duration. Electronics. 8 (2019), no. 12, 1395.