DOI QR코드

DOI QR Code

Single-bit digital comparator circuit design using quantum-dot cellular automata nanotechnology

  • Vijay Kumar Sharma (School of Electronics & Communication Engineering, Shri Mata Vaishno Devi University)
  • Received : 2022.02.06
  • Accepted : 2022.06.13
  • Published : 2023.06.20

Abstract

The large amount of secondary effects in complementary metal-oxide-semiconductor technology limits its application in the ultra-nanoscale region. Circuit designers explore a new technology for the ultra-nanoscale region, which is the quantum-dot cellular automata (QCA). Low-energy dissipation, high speed, and area efficiency are the key features of the QCA technology. This research proposes a novel, low-complexity, QCA-based one-bit digital comparator circuit for the ultra-nanoscale region. The performance of the proposed comparator circuit is presented in detail in this paper and compared with that of existing designs. The proposed QCA structure for the comparator circuit only consists of 19 QCA cells with two clock phases. QCA Designer-E and QCA Pro tools are applied to estimate the total energy dissipation. The proposed comparator saves 24.00% QCA cells, 25.00% cell area, 37.50% layout cost, and 78.11% energy dissipation compared with the best reported similar design.

Keywords

References

  1. S. Riyaz and V. K. Sharma, Design of reversible Feynman and double Feynman gates in quantum-dot cellular automata nanotechnology, Circuit World (2021).
  2. J.-C. Jeon, Designing nanotechnology QCA-multiplexer using majority function-based NAND for quantum computing, J. Supercomput. 77 (2021), 1562-1578. https://doi.org/10.1007/s11227-020-03341-8
  3. V. K. Sharma, Optimal design for 1:2n demultiplexer using QCA nanotechnology with energy dissipation analysis, Int. J. Numer. Modell. Electron. Netw. Devices Fields 34 (2021), no. 6. https://doi.org/10.1002/jnm.2907
  4. Z. Song, G. Xie, X. Cheng, L. Wang, and Y. Zhang, An ultralow cost multilayer RAM in quantum-dot cellular automata, IEEE Trans. Circuits Syst. II 67 (2020), no. 12, 3397-3401.
  5. S. Riyaz, S. F. Naz, and V. K. Sharma, Multioperative reversible gate design with implementation of 1-bit full adder and subtractor along with energy dissipation analysis, Int. J. Circuit Theor. Appl. 49 (2021), no. 4, 990-1012. https://doi.org/10.1002/cta.2886
  6. D. Abedi, G. Dariush, G. Jaberipur, and M. Sangsefidi, Coplanar full adder in quantum-dot cellular automata via clockzone-based crossover, I.E.E.E. Trans. Nanotechnol. 14 (2015), no. 3, 497-504.
  7. S. Swaraj, K. Chitransh, and V. K. Sharma, Block coding 3B/4B for digital communication using quantum-dot cellular automata technology, (2021 3rd International Conference on Signal Processing and Communication, Coimbatore, India), 2021, pp. 335-339.
  8. A. N. Bahar, M. S. Uddin, M. Abdullah-Al-Shafi, M. M. R. Bhuiyan, and K. Ahmed, Designing efficient QCA even parity generator circuits with power dissipation analysis, Alex. Eng. J. 57 (2018), no. 4, 2475-2484. https://doi.org/10.1016/j.aej.2017.02.002
  9. B. Raina, C. Verma, M. Gupta, and V. K. Sharma, Binary coded decimal (BCD) seven segment circuit designing using quantumdot cellular automata (QCA), (5th International Conference on Trends in Electronics and Informatics, Tirunelveli, India), 2021, pp. 126-130.
  10. F. Salimzadeh and S. R. Heikalabad, A full adder structure with a unique XNOR gate based on Coulomb interaction in QCA nanotechnology, Opt. Quantum Electron. 53 (2021), no. 8, 1-9. https://doi.org/10.1007/s11082-020-02634-9
  11. A. N. Bahar and K. A. Wahid, Design and implementation of approximate DCT architecture in quantum-dot cellular automata, IEEE Trans. Very Large Scale Integr. Syst. 28 (2020), no. 12, 2530-2539. https://doi.org/10.1109/TVLSI.2020.3013724
  12. C. A. T. Campos, T. C. Araujo, A. L. Marciano, O. P. Vilela Neto, and F. S. Torres, Use: A universal, scalable, and efficient clocking scheme for QCA, IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 35 (2015), no. 3, 513-517.
  13. V. Vankamamidi, M. Ottavi, and F. Lombardi, Twodimensional schemes for clocking/timing of QCA circuits, IEEE Trans. Comput. Aid. Des. Integr. Circuits Syst. 27 (2007), no. 1, 34-44. https://doi.org/10.1109/TCAD.2007.907020
  14. I. Hanninen and J. Takala, Binary adders on quantum-dot cellular automata, J. Signal Process. Syst. 58 (2010), no. 1, 87-103. https://doi.org/10.1007/s11265-008-0284-5
  15. S. R. Kassa, R. K. Nagaria, and R. Karthik, Energy efficient neoteric design of a 3-input majority gate with its implementation and physical proof in quantum dot cellular automata, Nano. Commun. Netw. 15 (2018), 28-40. https://doi.org/10.1016/j.nancom.2018.02.001
  16. R. Yaser, S. R. Heikalabad, and M. Mosleh, Efficient structures for fault-tolerant majority gate in quantum-dot cellular automata, Opt. Quantum Electron. 53 (2021), no. 1, 1-18. https://doi.org/10.1007/s11082-020-02634-9
  17. M. N. Divshali and A. Rezai, Novel circuits design for SISO shift register in QCA technology, J. Circuits Syst. Comput. 30 (2021). https://doi.org/10.1142/S0218126621502030
  18. F. Deng, G. Xie, Y. Zhang, F. Peng, and H. Lv, A novel design and analysis of comparator with XNOR gate for QCA, Microprocess. Microsyst. 55 (2017), 131-135. https://doi.org/10.1016/j.micpro.2017.10.009
  19. M. Gao, J. Wang, S. Fang, J. Nan, and L. Daming, A new nano design for implementation of a digital comparator based on quantum-dot cellular automata, Int. J. Theor. Phys. 60 (2021), no. 7, 2358-2367. https://doi.org/10.1007/s10773-020-04499-w
  20. B. Safaiezadeh, E. Mahdipour, M. Haghparast, S. Sayedsalehi, and M. Hosseinzadeh, Design and simulation of efficient combinational circuits based on a new XOR structure in QCA technology, Opt. Quantum Electron. 53 (2021), no. 12, 1-16. https://doi.org/10.1007/s11082-020-02634-9
  21. L. Wang and G. Xie, A novel XOR/XNOR structure for modular design of QCA circuits, IEEE Trans. Circuits Syst. II 67 (2020), no. 12, 3327-3331.
  22. A. H. Majeed, M. S. Zainal, E. Alkaldy, D. M. Nor, and D. M. Nor, Single-bit comparator in quantum-dot cellular automata (QCA) technology using novel QCA-XNOR gates, J. Electron. Sci. Technol. 19 (2021), no. 3. https://doi.org/10.1016/j.jnlest.2020.100078
  23. M. Hayati and A. Rezaei, Design and optimization of full comparator based on quantum-dot cellular automata, ETRI J. 34 (2012), no. 2, 284-287. https://doi.org/10.4218/etrij.12.0211.0258
  24. A. Shiri, A. Rezai, and H. Mahmoodian, Design of efficient coplanar comprator circuit in QCA technology, Facta Univ. S. Electron. Energ. 32 (2019), no. 1, 119-128. https://doi.org/10.2298/FUEE1901119S
  25. J. Pal, M. Noorallahzadeh, J. S. Sil Sharma, D. Bhowmik, A. K. Saha, and B. Sen, Regular clocking scheme based design of costefficient comparator in QCA, Ind. J. Electr. Eng. Comput. Sci. 21 (2021), no. 1, 44-55.
  26. R. Mokhtarii and A. Rezai, Investigation and design of novel comparator in quantum-dot cellular automata technology, J. Nano Electron. Phys. 10 (2018), no. 5, 05014.
  27. A. Khan and R. Arya, High performance nanocomparator: A quantum dot cellular automata-based approach, J. Supercomput. 1-17 (2021), 2337-2353. https://doi.org/10.1007/s11227-021-03961-8
  28. B. Sen, A. Nag, A. De, and B. K. Sikdar, Towards the hierarchical design of multilayer QCA logic circuit, J. Comput. Sci. 11 (2015), 233-244. https://doi.org/10.1016/j.jocs.2015.09.010
  29. QCADesigner-E, 2017. https://github.com/FSillT/QCADesigner-E
  30. K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata, IEEE Trans. Nanotechnol. 3 (2004), no. 1, 26-31. https://doi.org/10.1109/TNANO.2003.820815
  31. S. Srivastava, A. Asthana, S. Bhanja, and S. Sarkar, QCAPro-an error-power estimation tool for QCA circuit design, (IEEE international symposium of circuits and systems, Rio de Janeiro, Brazil), 2011, 2377-2380.
  32. A. N. Bahar and K. A. Wahid, Design of QCA-serial parallel multiplier (QSPM) with energy dissipation analysis, IEEE Trans. Circuits Syst. II 67 (2019), no. 10, 1939-1943.
  33. F. S. Torres, N. Philipp, W. Robert, and D. Rolf, Breaking Landauer's Limit\Using Quantum-dot Cellular Automata, arXiv preprint, 2018. https://doi.org/10.48550/arXiv.1811.03894
  34. F. S. Torres, W. Robert, N. Philipp, and D. Rolf, An energyaware model for the logic synthesis of quantum-dot cellular automata, IEEE Trans. Computer-Aided Desig. Integrat. Circuits Syst. 37 (2018), no. 12, 3031-3041. https://doi.org/10.1109/TCAD.2018.2789782
  35. S. Srivastava, S. Sarkar, and S. Bhanja, Estimation of upper bound of power dissipation in QCA circuits, IEEE Trans. Nanotechnol. 8 (2008), no. 1, 116-127.  https://doi.org/10.1109/TNANO.2008.2005408