DOI QR코드

DOI QR Code

Microencapsulation of Mitragyna leaf extracts to be used as a bioactive compound source to enhance in vitro fermentation characteristics and microbial dynamics

  • Maharach Matra (Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Srisan Phupaboon (Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Pajaree Totakul (Division of Animal Science, Faculty of Agricultural Technology, Rajamangala University of Technology Thanyaburi) ;
  • Ronnachai Prommachart (Department of Animal Science, Faculty of Agriculture and Natural Resources, Rajamangala University of Technology) ;
  • Assar Ali Shah (Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University) ;
  • Ali Mujtaba Shah (Department of Livestock Production, Shaheed Benazir Bhutto University of Veterinary and Animal Science) ;
  • Metha Wanapat (Tropical Feed Resources Research and Development Center, Department of Animal Science, Faculty of Agriculture, Khon Kaen University)
  • 투고 : 2023.05.25
  • 심사 : 2023.09.12
  • 발행 : 2024.01.01

초록

Objective: Mitragyna speciosa Korth is traditionally used in Thailand. They have a high level of antioxidant capacities and bioactive compounds, the potential to modulate rumen fermentation and decrease methane production. The aim of the study was to investigate the different levels of microencapsulated-Mitragyna leaves extracts (MMLE) supplementation on nutrient degradability, rumen ecology, microbial dynamics, and methane production in an in vitro study. Methods: A completely randomized design was used to assign the experimental treatments, MMLE was supplemented at 0%, 4%, 6%, and 8% of the total dry matter (DM) substrate. Results: The addition of MMLE significantly increased in vitro dry matter degradability both at 12, 24, and 48 h, while ammonia-nitrogen (NH3-N) concentration was improved with MMLE supplementation. The MMLE had the greatest propionate and total volatile fatty acid production when added with 6% of total DM substrate, while decreased the methane production (12, 24, and 48 h). Furthermore, the microbial population of cellulolytic bacteria and Butyrivibrio fibrisolvens were increased, whilst Methanobacteriales was decreased with MMLE feeding. Conclusion: The results indicated that MMLE could be a potential alternative plant-based bioactive compound supplement to be used as ruminant feed additives.

키워드

과제정보

The authors wish to acknowledge their appreciation to the Tropical Feed Resources Research and Development Center (TROFREC), Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Thailand.

참고문헌

  1. Kholif AE, Gouda GA, Abu Elella AA, Patra AK. Replacing the concentrate feed mixture with Moringa oleifera leaves silage and Chlorella vulgaris microalgae mixture in diets of damascus goats: lactation performance, nutrient utilization, and ruminal fermentation. Animal 2022;12:1589. https://doi.org/10.3390/ani12121589 
  2. Matra M, Wanapat M. Phytonutrient pellet supplementation enhanced rumen fermentation efficiency and milk production of lactating Holstein-Friesian crossbred cows. Anim Nutr 2022;9:119-26. https://doi.org/10.1016/j.aninu.2021.12.002 
  3. Wanapat M, Viennasay B, Matra M, et al. Supplementation of fruit peel pellet containing phytonutrients to manipulate rumen pH, fermentation efficiency, nutrient digestibility and microbial protein synthesis. J Sci Food Agric 2021;101: 4543-50. https://doi.org/10.1002/jsfa.11096 
  4. Singh S, Hundal JS, Patra AK, Sethi RS, Sharma A. A composite polyphenol-rich extract improved growth performance, ruminal fermentation and immunity, while decreasing methanogenesis and excretion of nitrogen and phosphorus in growing buffaloes. Environ Sci Pollut Res 2022;29:24757-73. https://doi.org/10.1007/s11356-021-17674-1 
  5. Vasta V, Luciano G. The effects of dietary consumption of plants secondary compounds on small ruminants' products quality. Small Rumin Res 2011;101:150-9. https://doi.org/10.1016/j.smallrumres.2011.09.035 
  6. Eisenman SW. The botany of Mitragyna speciosa (Korth.) Havil. and related species. In: Raffa RB, editor. Kratom and other Mitragynines: The chemistry and pharmacology of opioids from a non-opium source. Boca Raton, FL, USA: CRC Press;2015. pp. 57-76. 
  7. Singh D, Chear NJY, Narayanan S, et al. Patterns and reasons for kratom (Mitragyna speciosa) use among current and former opioid poly-drug users. J Ethnopharmacol 2020;249: 112462. https://doi.org/10.1016/j.jep.2019.112462 
  8. Raffa RB. Kratom and other mitragynines: the chemistry and pharmacology of opioids from a non-opium source. Boca Raton, FL, USA: CRC Press; 2015. 
  9. Hassan Z, Muzaimi M, Navaratnam V, et al. From Kratom to mitragynine and its derivatives: Physiological and behavioural effects related to use, abuse, and addiction. Neurosci Biobehav Rev 2013;37:138-51. https://doi.org/10.1016/j.neubiorev.2012.11.012 
  10. Phesatcha K, Phesatcha B, Wanapat M, Cherdthong A. Mitragyna speciosa korth leaves supplementation on feed utilization, rumen fermentation efficiency, microbial population, and methane production in vitro. Fermentation 2022;8:8. https://doi.org/10.3390/fermentation8010008 
  11. Chanjula P, Wungsintaweekul J, Chiarawipa R, et al. Effect of feed supplement containing dried kratom leaves on apparent digestibility, rumen fermentation, serum antioxidants, hematology, and nitrogen balance in goats. Fermentation 2022;8:131. https://doi.org/10.3390/fermentation8030131 
  12. Kim TB, Lee JS, Cho SY, Lee HG. In vitro and in vivo studies of rumen-protected microencapsulated supplement comprising linseed oil, vitamin e, rosemary extract, and hydrogenated palm oil on rumen fermentation, physiological profile, milk yield, and milk composition in dairy cows. Animal 2020;10:1631. https://doi.org/10.3390/ani10091631 
  13. Vakarelova M, Zanoni F, Lardo P, et al. Production of stable food-grade microencapsulated astaxanthin by vibrating nozzle technology. Food Chem 2017;221:289-95. https://doi.org/10.1016/j.foodchem.2016.10.085 
  14. Flores FP, Singh RK, Kerr WL, Pegg RB, Kong F. Total phenolics content and antioxidant capacities of microencapsulated blueberry anthocyanins during in vitro digestion. Food Chem 2014;153:272-8. https://doi.org/10.1016/j.foodchem.2013.12.063 
  15. Nouri A. Chitosan nano-encapsulation improves the effects of mint, thyme, and cinnamon essential oils in broiler chickens. Br Poult Sci 2019;60:530-8. https://doi.org/10.1080/00071668.2019.1622078 
  16. Kurek MA, Pratap-Singh A. Plant-based (hemp, pea and rice) protein-maltodextrin combinations as wall material for spray-drying microencapsulation of hempseed (Cannabis sativa) oil. Foods 2020;9:1707. https://doi.org/10.3390/foods9111707 
  17. Ko JA, Park HJ, Hwang SJ, Park JB, Lee JS. Preparation and characterization of chitosan microparticles intended for controlled drug delivery. Int J Pharm 2002;249:165-14. https://doi.org/10.1016/S0378-5173(02)00487-8 
  18. AOAC. Official methods of analysis, 19th ed.; Gaithersburg, MD, USA: Association of Official Analytical Chemists; 2012. 
  19. Van Soest PV, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 
  20. Al-Duais M, Muller L, Bohm V, Jetschke G. Antioxidant capacity and total phenolics of Cyphostemma digitatum before and after processing: use of different assays. Eur Food Res Technol 2009;228:813-21. https://doi.org/10.1007/s00217-008-0994-8 
  21. Topcu G, Ay M, Bilici A, Sarikurkcu C, Ozturk M, Ulubelen A. A new flavone from antioxidant extracts of Pistacia terebinthus. Food Chem 2007;103:816-22. https://doi.org/10. 1016/j.foodchem.2006.09.028  https://doi.org/10.1016/j.foodchem.2006.09.028
  22. Gali L, Bedjou F. Antioxidant and anticholinesterase effects of the ethanol extract, ethanol extract fractions and total alkaloids from the cultivated Ruta chalepensis. S Afr J Bot 2019;120:163-9. https://doi.org/10.1016/j.sajb.2018.04.011 
  23. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, RiceEvans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3 
  24. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 1996;239:70-6. https://doi.org/10.1006/abio.1996.0292 
  25. Phupaboon S, Matra M, Prommachart R, Totakul P, Supapong C, Wanapat M. Extraction, characterization, and chitosan microencapsulation of bioactive compounds from Cannabis sativa L., Cannabis indica L., and Mitragyna speiosa K. Antioxidants 2022;11:2103. https://doi.org/10.3390/antiox11112103 
  26. National Research Council (NRC). Nutrient requirements of dairy cattle, 7th ed.; National Research Council. Washington, DC, USA: The National Academies Press; 2001. 
  27. Matra M, Totakul P, Wanapat M. Utilization of dragon fruit waste by-products and non-protein nitrogen source: Effects on in vitro rumen fermentation, nutrients degradability and methane production. Livest Sci 2021;243:104386. https://doi.org/10.1016/j.livsci.2020.104386 
  28. Orskov ER, McDonald I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J Agric Sci 1979;92:499-503. https://doi.org/10.1017/S0021859600063048 
  29. Samuel M, Ceballos-Baumann AO, Blin J, et al. Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements. A PET study. Brain 1997;120:963-76. https://doi.org/10.1093/brain/120.6.963 
  30. Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 2001;204:361-6. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x 
  31. Ouwerkerk D, Klieve AV, Forster RJ. Enumeration of Megasphaera elsdenii in rumen contents by real-time Taq nuclease assay. J Appl Microbiol 2002;92:753-8. https://doi.org/10.1046/j.1365-2672.2002.01580.x 
  32. Fernando SC, Purvis HT, Najar FZ, et al. Rumen microbial population dynamics during adaptation to a high-grain diet. Appl Environ Microbiol 2010;76:7482-90. https://doi.org/10.1128/AEM.00388-10 
  33. Yu Y, Lee C, Kim J, Hwang S. Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnol Bioeng 2005;89:670-9. https://doi.org/10.1002/bit.20347 
  34. Statistical Analysis System. User's guide: Statistic. Cary, NC, USA: SAS Inst. Inc.; 2013. 
  35. Pal K, Patra AK, Sahoo A. Evaluation of feeds from tropical origin for in vitro methane production potential and rumen fermentation in vitro. Span J Agric Res 2015;13:e0608. https://doi.org/10.5424/sjar/2015133-7467 
  36. Zhan J, Liu M, Su X, Zhan K, Zhang C, Zhao G. Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows. AsianAustralas J Anim Sci 2017;30:1416-24. https://doi.org/10.5713/ajas.16.0579 
  37. Sommai S, Cherdthong A, Suntara C, So S, Wanapat M, Polyorach S. In vitro fermentation characteristics and methane mitigation responded to flavonoid extract levels from Alternanthera sissoo and dietary ratios. Fermentation 2021;7:109. https://doi.org/10.3390/fermentation7030109 
  38. Wanapat M. Manipulation of cassava cultivation and utilization to improve protein to energy biomass for livestock feeding in the tropics. Asian-Australas J Anim Sci 2003;16:463-72. https://doi.org/10.5713/ajas.2003.463 
  39. Viennasay B, Totakul P, Matra M, Phesatcha B, Wanapat M. Influence of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on in vitro fermentation and methane mitigation. J Sci Food Agric 2022;102:4927-32. https://doi.org/10.1002/jsfa.11858 
  40. Ahmed E, Fukuma N, Hanada M, Nishida T. The efficacy of plant-based bioactives supplementation to different proportion of concentrate diets on methane production and rumen fermentation characteristics in vitro. Animals 2021;11:1029. https://doi.org/10.3390/ani11041029 
  41. Patra AK, Saxena J. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr Res Rev 2009;22:204-19. https://doi.org/10.1017/S0954422409990163 
  42. Newbold CJ, Lopez S, Nelson N, Ouda JO, Wallace RJ, Moss AR. Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro. Br J Nutr 2005;94:27-35. https://doi.org/10.1079/BJN20051445 
  43. Totakul P, Viennasay B, Sommai S, Matra M, Infascelli F, Wanapat M. Chaya (Cnidoscolus aconitifolius, Mill. Johnston) pellet supplementation improved rumen fermentation, milk yield and milk composition of lactating dairy cows. Livest Sci 2022;262:104974. https://doi.org/10.1016/j.livsci.2022.104974 
  44. Bodas R, Prieto N, Garcia-Gonzalez R, Andres S, Giraldez FJ, Lopez S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim Feed Sci Technol 2012;176:78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010 
  45. Naumann HD, Tedeschi LO, Zeller WE, Huntley NF. The role of condensed tannins in ruminant animal production: advances, limitations and future directions. Rev Bras Zootec 2017;46:929-49. https://doi.org/10.1590/S1806-92902017001200009 
  46. Huang H, Szumacher-Strabel M, Patra AK, et al. Chemical and phytochemical composition, in vitro ruminal fermentation, methane production, and nutrient degradability of fresh and ensiled Paulownia hybrid leaves. Anim Feed Sci Technol 2021;279:115038. https://doi.org/10.1016/j.anifeedsci.2021.115038 
  47. Ultee A, Kets EPW, Smid EJ. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 1999;65:4606-10. https://doi.org/10.1128/AEM.65.10.4606-4610.1999 
  48. Rira M, Morgavi DP, Archimede H, et al. Potential of tanninrich plants for modulating ruminal microbes and ruminal fermentation in sheep. J Anim Sci 2015;93:334-47. https://doi.org/10.2527/jas.2014-7961 
  49. Berchez M, Urcan AC, Corcionivoschi N, Criste A. In vitro effects of phenolic acids and IgY immunoglobulins on aspects of rumen fermentation. Rom Biotechnol Lett 2019;24:513-21. https://doi.org/10.25083/rbl/24.3/513.521 
  50. Manasri N, Wanapat M, Navanukraw C. Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation. Livest Sci 2012;148: 291-5. https://doi.org/10.1016/j.livsci.2012.06.009