DOI QR코드

DOI QR Code

Fermentation characteristics and microbial community composition of wet brewer's grains and corn stover mixed silage prepared with cellulase and lactic acid bacteria supplementation

  • Guoqiang Zhao (Guangdong VTR Bio-Tech Co., Ltd.) ;
  • Hao Wu (State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University) ;
  • Yangyuan Li (Guangdong VTR Bio-Tech Co., Ltd.) ;
  • Li Li (Guangdong VTR Bio-Tech Co., Ltd.) ;
  • Jiajun He (Guangdong VTR Bio-Tech Co., Ltd.) ;
  • Xinjian Yang (Guangdong VTR Bio-Tech Co., Ltd.) ;
  • Xiangxue Xie (Guangdong VTR Bio-Tech Co., Ltd.)
  • Received : 2023.05.11
  • Accepted : 2023.06.26
  • Published : 2024.01.01

Abstract

Objective: The objective of this study was to investigate how cellulase or/and lactic acid bacteria (LAB) affected the fermentation characteristic and microbial community in wet brewer's grains (WBG) and corn stover (CS) mixed silage. Methods: The WBG was mixed thoroughly with the CS at 7:3 (w/w). Four treatment groups were studied: i) CON, no additives; ii) CEL, added cellulase (120 U/g fresh matter [FM]), iii) LAB, added LAB (2×106 cfu/g FM), and iv) CLA, added cellulase (120 U/g FM) and LAB (2×106 cfu/g FM). Results: All additive-treated groups showed higher fermentation quality over the 30 d ensiling period. As these groups exhibited higher (p<0.05) LAB counts and lactic acid (LA) content, along with lower pH value and ammonia-nitrogen (NH3-N) content than the control. Specifically, cellulase-treated groups (CEL and CLA) showed lower (p<0.05) neutral detergent fiber and acid detergent fiber contents than other groups. All additives increased the abundance of beneficial bacteria (Firmicutes, Lactiplantibacillus, and Limosilactobacillus) while they decreased abundance of Proteobacteria and microbial diversity as well. Conclusion: The combined application of cellulase and LAB could effectively improve the fermentation quality and microbial community of the WBG and CS mixed silage.

Keywords

Acknowledgement

This study was supported by a general program of the National Natural Science Foundation of China (Grant Number. 31972593), and the National Key Research Development Program of China (Grant No. 2022YFC2805105).

References

  1. Wang B, Luo Y, Myung KH, Liu JX. Effects of storage duration and temperature on the chemical composition, microorganism density, and in vitro rumen fermentation of wet brewers grains. Asian-Australas J Anim Sci 2014;27:832-40. https://doi.org/10.5713/ajas.2013.13668
  2. Yan Y, Li X, Guan H, et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour Technol 2019;279:166-73. https://doi.org/10.1016/j.biortech.2019.01.107
  3. Zhao C, Wang L, Ma G, et al. Cellulase interacts with lactic acid bacteria to affect fermentation quality, microbial community, and ruminal degradability in mixed silage of soybean residue and corn stover. Animals (Basel) 2021;11:334. https://doi.org/10.3390/ani11020334
  4. Zhao S, Li G, Zheng N, Wang J, Yu Z. Steam explosion enhances digestibility and fermentation of corn stover by facilitating ruminal microbial colonization. Bioresour Technol 2018;253:244-51. https://doi.org/10.1016/j.biortech.2018.01.024
  5. Ni K, Zhao J, Zhu B, et al. Assessing the fermentation quality and microbial community of the mixed silage of forage soybean with crop corn or sorghum. Bioresour Technol 2018;265:563-7. https://doi.org/10.1016/j.biortech.2018.05.097
  6. He L, Zhou W, Wang Y, Wang C, Chen X, Zhang Q. Effect of applying lactic acid bacteria and cellulase on the fermentation quality, nutritive value, tannins profile and in vitro digestibility of Neolamarckia cadamba leaves silage. J Anim Physiol Anim Nutr (Berl) 2018;102:1429-36. https://doi.org/10.1111/jpn.12965
  7. Zhao G, Wu H, Li L, et al. Effects of applying cellulase and starch on the fermentation characteristics and microbial communities of Napier grass (Pennisetum purpureum Schum.) silage. J Anim Sci Technol 2021;63:1301-13. https://doi.org/10.5187/jast.2021.e107
  8. AOAC International. Official methods of analysis. 19th ed. Arlington, VA, USA: AOAC Int; 2012.
  9. Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 1991;74:3583-97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  10. Yemm EW, Willis AJ. The estimation of carbohydrates in plant extracts by anthrone. Biochem J 1954;57:508-14. https://doi.org/10.1042/bj0570508
  11. Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro media. J Dairy Sci 1980;63:64-75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8
  12. Olsen RA, Bakken LR. Viability of soil bacteria: Optimization of plate-counting technique and comparison between total counts and plate counts within different size groups. Microb Ecol 1987;13:59-74. https://doi.org/10.1007/BF02014963
  13. Guan H, Yan Y, Li X, et al. Microbial communities and natural fermentation of corn silages prepared with farm bunkersilo in Southwest China. Bioresour Technol 2018;265:282-90. https://doi.org/10.1016/j.biortech.2018.06.018
  14. Hu W, Schmidt RJ, McDonell EE, Klingerman CM, Kung L Jr. The effect of Lactobacillus buchneri 40788 or Lactobacillus plantarum MTD-1 on the fermentation and aerobic stability of corn silages ensiled at two dry matter contents. J Dairy Sci 2009;92:3907-14. https://doi.org/10.3168/jds.2008-1788
  15. Mu L, Xie Z, Hu L, Chen G, Zhang Z. Lactobacillus plantarum and molasses alter dynamic chemical composition, microbial community, and aerobic stability of mixed (amaranth and rice straw) silage. J Sci Food Agric 2021;101:5225-35. https://doi.org/10.1002/jsfa.11171
  16. Zhang JG, Kawamoto H, Cai YM. Relationships between the addition rates of cellulase or glucose and silage fermentation at different temperatures. Anim Sci J 2010;81:325-30. https://doi.org/10.1111/j.1740-0929.2010.00745.x
  17. He L, Wang C, Xing Y, et al. Ensiling characteristics, proteolysis and bacterial community of high-moisture corn stalk and stylo silage prepared with Bauhinia variegate flower. Bioresour Technol 2020;296:122336. https://doi.org/10.1016/j.biortech.2019.122336
  18. Guo G, Yuan X, Li L, Wen A, Shao T. Effects of fibrolytic enzymes, molasses and lactic acid bacteria on fermentation quality of mixed silage of corn and hulless-barely straw in the Tibetan Plateau. Grassl Sci 2014;60:240-6. https://doi.org/10.1111/grs.12060
  19. Arriola KG, Queiroz OC M, Romero JJ, et al. Effect of microbial inoculants on the quality and aerobic stability of bermudagrass round-bale haylage. J Dairy Sci 2015;98:478-85. https://doi.org/10.3168/jds.2014-8411
  20. Mu L, Xie Z, Hu L, Chen G, Zhang Z. Cellulase interacts with Lactobacillus plantarum to affect chemical composition, bacterial communities, and aerobic stability in mixed silage of high-moisture amaranth and rice straw. Bioresour Technol 2020;315:123772. https://doi.org/10.1016/j.biortech.2020.123772
  21. Ebrahimi M, Rajion MA, Goh YM, et al. The effects of adding lactic acid bacteria and cellulase in oil palm (Elais Guineensis Jacq.) frond silages on fermentation quality, chemical composition and in vitro digestibility. Ital J Anim Sci 2014;13:3358. https://doi.org/10.4081/ijas.2014.3358
  22. Hassanat F, Mustafa AF, Seguin P. Effects of inoculation on ensiling characteristics, chemical composition and aerobic stability of regular and brown midrib millet silages. Anim Feed Sci Technol 2007;139:125-40. https://doi.org/10.1016/j.anifeedsci.2007.01.005
  23. Li J, Yuan X, Desta ST, Dong Z, Mugabe W, Shao T. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour Technol 2018;257:76-83. https://doi.org/10.1016/j.biortech.2018.02.070
  24. Kung L Jr, Shaver RD, Grant RJ, Schmidt RJ. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J Dairy Sci 2018;101:4020-33. https://doi.org/10.3168/jds.2017-13909
  25. Ogunade IM, Jiang Y, Kim DH, et al. Fate of Escherichia coli O157:H7 and bacterial diversity in corn silage contaminated with the pathogen and treated with chemical or microbial additives. J Dairy Sci 2017;100:1780-94. https://doi.org/10.3168/jds.2016-11745
  26. Romero JJ, Zhao Y, Balseca-Paredes MA, Tiezzi F, Gutierrez-Rodriguez E, Castillo MS. Laboratory silo type and inoculation effects on nutritional composition, fermentation, and bacterial and fungal communities of oat silage. J Dairy Sci 2017;100:1812-28. https://doi.org/10.3168/jds.2016-11642
  27. Yuan XJ, Dong ZH, Li JF, Shao T. Microbial community dynamics and their contributions to organic acid production during the early stage of the ensiling of Napier grass (Pennisetum purpureum). Grass Forage Sci 2020;75:37-44. https://doi.org/10.1111/gfs.12455
  28. Cheng Q, Chen L, Chen Y, Li P, Chen C. Effects of LAB inoculants on the fermentation quality, chemical composition, and bacterial community of oat silage on the Qinghai-Tibetan plateau. Microorganisms 2022;10:787. https://doi.org/10.3390/microorganisms10040787
  29. Xu D, Ding W, Ke W, Li F, Zhang P, Guo X. Modulation of Metabolome and Bacterial Community in Whole Crop Corn Silage by Inoculating Homofermentative Lactobacillus plantarum and Heterofermentative Lactobacillus buchneri. Front Microbiol 2019;9:3299. https://doi.org/10.3389/fmicb.2018.03299
  30. Wang C, He L, Xing Y, et al. Fermentation quality and microbial community of alfalfa and stylo silage mixed with Moringa oleifera leaves. Bioresour Technol 2019;284:240-7. https://doi.org/10.1016/j.biortech.2019.03.129