DOI QR코드

DOI QR Code

Impact of glucose and pyruvate on adenosine triphosphate production and sperm motility in goats

  • Rangga Setiawan (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Raden Febrianto Christi (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Ken Ratu Gharizah Alhuur (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Rini Widyastuti (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Nurcholidah Solihati (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Siti Darodjah Rasad (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Kundrat Hidajat (Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran) ;
  • Duy Ngoc Do (Department of Animal Science and Aquaculture, Dalhousie University)
  • Received : 2023.06.19
  • Accepted : 2023.09.06
  • Published : 2024.04.01

Abstract

Objective: This study evaluates goat sperm motility in response to metabolic substrates and various inhibitors, aiming to assess the relative contribution of glycolysis and mitochondrial oxidation for sperm movement and adenosine triphosphate (ATP) production. Methods: In the present study, two main metabolic substrates; 0 to 0.5 mM glucose and 0 to 30 mM pyruvate were used to evaluate their contribution to sperm movements of goats. Using a 3-chloro-1,2-propanediol (3-MCPD), a specific inhibitor for glycolysis, and carbonyl cyanide 3-chlorophenylhydrazone as an inhibitor for oxidative phosphorylation, cellular mechanisms into ATP-generating pathways in relation to sperm movements and ATP production were observed. Data were analysed using one-way analysis of variance for multiple comparisons. Results: Sperm motility analysis showed that either glucose or pyruvate supported sperm movement during 0 to 30 min incubation. However, the supporting effects were abolished by the addition of a glycolysis inhibitor or mitochondrial uncoupler, concomitant with a significant decrease in ATP production. Although oxidative phosphorylation produces larger ATP concentrations than those from glycolysis, sperm progressivity in relation to these two metabolic pathways is comparable. Conclusion: Based on the present study, we suggest that goat sperm use glucose and pyruvate to generate cellular energy through glycolysis and mitochondrial respiration pathways to maintain sperm movement.

Keywords

Acknowledgement

This research was supported by Internal Research Grant Universitas Padjadjaran (HIU RPLK UNPAD No. 3018/UN6.3.1/PT.00/2023) (to Rangga Setiawan).

References

  1. Bohnensack R, Halangk W. Control of respiration and of motility in ejaculated bull spermatozoa. Biochim Biophys Acta Bioenerg 1986;850:72-9. https://doi.org/10.1016/0005-2728(86)90010-1
  2. Turner RM. Moving to the beat: a review of mammalian sperm motility regulation. Reprod Fertil Dev 2005;18:25-38. https://doi.org/10.1071/RD05120
  3. Mukai C, Okuno M. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagellar movement. Biol Reprod 2004;71:540-7. https://doi.org/10.1095/biolreprod.103.026054
  4. Ford WCL. Glycolysis and sperm motility: does a spoonful of sugar help the flagellum go round? Hum Reprod Update 2006;12:269-74. https://doi.org/10.1093/humupd/dmi053
  5. Davila MP, Munoz PM, Tapia JA, et al. Inhibition of mitochondrial complex I leads to decreased motility and membrane integrity related to increased hydrogen peroxide and reduced ATP production, while the inhibition of glycolysis has less impact on sperm motility. PLoS One 2015;10:e0138777. https://doi.org/10.1371/journal.pone.0138777
  6. Chaudhry R, Varacallo M. Biochemistry, glycolysis. Treasure Island, FL, USA: StatPearls; 2018.
  7. Melkonian EA, Schury MP. Biochemistry, anaerobic glycolysis. Treasure Island, FL, USA: StatPearls; 2019.
  8. Setiawan R, Priyadarshana C, Tajima A, Travis AJ, Asano A. Localisation and function of glucose transporter GLUT1 in chicken (Gallus gallus domesticus) spermatozoa: relationship between ATP production pathways and flagellar motility. Reprod Fertil Dev 2020;32:697-705. https://doi.org/10.1071/RD19240
  9. Setiawan R, Priyadarshana C, Miyazaki H, Tajima A, Asano A. Functional difference of ATP-generating pathways in rooster sperm (Gallus gallus domesticus). Anim Reprod Sci 2021;233:106843. https://doi.org/10.1016/j.anireprosci.2021.106843
  10. Brooks DE, Mann T. Pyruvate metabolism in boar spermatozoa. J Reprod Fertil 1973;34:105-19. https://doi.org/10.1530/jrf.0.0340105
  11. Darr CR, Varner DD, Teague S, et al. Lactate and pyruvate are major sources of energy for stallion sperm with dose effects on mitochondrial function, motility, and ROS production. Biol Reprod 2016;95:34. https://doi.org/10.1095/biolreprod.116.140707
  12. Elia J, Imbrogno N, Delfino M, Mazzilli R, Rossi T, Mazzilli F. The importance of the sperm motility classes-future directions. Open Androl J 2010;2:42-3.
  13. Wittek T, Erices J, Elze K. Histology of the endometrium, clinical-chemical parameters of the uterine fluid and blood plasma concentrations of progesterone, estradiol-17β and prolactin during hydrometra in goats. Small Rumin Res 1998;30:105-12. https://doi.org/10.1016/S0921-4488(98)00085-6
  14. Qiu JH, Li YW, Xie HL, et al. Effects of glucose metabolism pathways on sperm motility and oxidative status during long-term liquid storage of goat semen. Theriogenology 2016;86:839-49. https://doi.org/10.1016/j.theriogenology. 2016.03.005
  15. Mujica A, Moreno-Rodriguez R, Naciff J, Neri L, Tash JS. Glucose regulation of guinea-pig sperm motility. Reproduction 1991;92:75-87. https://doi.org/10.1530/jrf.0.0920075
  16. Ponglowhapan S, Essen-Gustavsson B, Forsberg CL. Influence of glucose and fructose in the extender during long-term storage of chilled canine semen. Theriogenology 2004;62:1498-517. https://doi.org/10.1016/j.theriogenology.2004.02.014
  17. Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C. GLUTs and mammalian sperm metabolism. J Androl 2011;32:348-55. https://doi.org/10.2164/jandrol.110.011197
  18. Bucci D, Isani G, Spinaci M, et al. Comparative immunolocalization of GLUTs 1, 2, 3 and 5 in boar, stallion and dog spermatozoa. Reprod Domest Anim 2010;45:315-22. https://doi.org/10.1111/j.1439-0531.2008.01307.x
  19. Halestrap AP, Meredith D. The SLC16 gene family - From monocarboxylate transporters (MCTs) to aromatic amino acid transporters and beyond. Pflugers Arch Eur J Physiol 2004;447:619-28. https://doi.org/10.1007/s00424-003-1067-2
  20. Tourmente M, Villar-Moya P, Rial E, Roldan ERS. Differences in ATP generation via glycolysis and oxidative phosphorylation and relationships with sperm motility in mouse species. J Biol Chem 2015;290:20613-26. https://doi.org/10.1074/jbc.M115.664813
  21. Tombes RM, Shapiro BM. Metabolite channeling: a phosphorylcreatine shuttle to mediate high energy phosphate transport between sperm mitochondrion and tail. Cell 1985;41:325-34. https://doi.org/10.1016/0092-8674(85)90085-6