DOI QR코드

DOI QR Code

Experimental and numerical investigation on the seismic behavior of the sector lead rubber damper

  • Xin Xu (School of Civil Engineering, Guangzhou University) ;
  • Yun Zhou (School of Civil Engineering, Guangzhou University) ;
  • Zhang Yan Chen (School of Civil Engineering, Guangzhou University) ;
  • Song Wang (School of Civil Engineering, Guangzhou University) ;
  • Ke Jiang (Department of Civil and Natural Resources Engineering, University of Canterbury)
  • Received : 2023.12.13
  • Accepted : 2024.01.29
  • Published : 2024.03.25

Abstract

Beam-column joints in the frame structure are at high risk of brittle shear failure which would lead to significant residual deformation and even the collapse of the structure during an earthquake. In order to improve the damage issue and enhance the recoverability of the beam-column joints, a sector lead rubber damper (SLRD) has been developed. The SLRD can increase the bearing capacity and energy dissipation capacity, and also demonstrating recoverability of seismic performance following cyclic loading. In this paper, the hysteretic behavior of SLRD was experimentally investigated in terms of the regular hysteretic behavior, large deformation behavior and fatigue behavior. Furthermore, a parametric analysis was performed to study the influence of the primary design parameters on the hysteretic behavior of SLRD. The results show that SLRD resist the exerted loading through the shear capacity of both rubber parts coupled with the lead cores in the pre-yielding stage of lead cores. In the post-yielding phase, it is only the rubber parts of the SLRD that provide the shear capacity while the lead cores primarily dissipate the energy through shear deformation. The SLRD possesses a robust capacity for large deformation and can sustain hysteretic behavior when subjected to a loading rotation angle of 1/7 (equivalent to 200% shear strain of the rubber component). Furthermore, it demonstrates excellent fatigue resistance, with a degradation of critical behavior indices by no more than 15% in comparison to initial values even after 30 cycles. As for the designing practice of SLRD, it is recommended to adopt the double lead core scheme, along with a rubber material having the lowest possible shear modulus while meeting the desired bearing capacity and a thickness ratio of 0.4 to 0.5 for the thin steel plate.

Keywords

Acknowledgement

The authors would like to acknowledge the financial support provided by the National Natural Science Foundation of China (grant number 52178466), and Basic Innovation Program for graduate students of Guangzhou University (grant number 2017GDJC-D19). Also, a special appreciation goes to Heng Shui Zhen Tai Isolation Equipment Co., Ltd. for their support in the fabrication of the tested dampers.

References

  1. Banazadeh, A., Maleki, A. and Yaghin, M.A.L. (2023), "Improved seismic performance of steel moment frames using rotational friction dampers", Earthq. Struct., 25(4), 223-234. https://doi.org/10.12989/eas.2023.25.4.223.
  2. Bartera, F. and Giacchetti, R. (2004), "Steel dissipating braces for upgrading existing building frames", J. Constr. Steel Res., 60, 751-769. https://doi.org/10.1016/S0143-974X (03)00141-X.
  3. Belleri, A., Marini, A., Riva, P. and Nascimbene, R. (2017), "Dissipating and re-centering devices for portal-frame precast structures", Eng. Struct., 150, 736-745. https://doi.org/10.1016/j.engstruct.2017.07.072
  4. Bruschi, E., Quaglini, V. (2022), "Assessment of a novel hysteretic friction damper for the seismic retrofit of reinforced concrete frame structures", Struct., 46, 793-811. https://doi.org/10.1016/j.istruc.2022.10.113.
  5. Cai, Z.W., Liu, X., Li, L.Z., Lu, Z.D. and Chen, Y. (2021), "Seismic performance of RC beam-column-slab joints strengthened with steel haunch system", J. Build. Eng., 44, 103250. https://doi.org/10.1016/j.jobe.2021.103250.
  6. Deng, B.Y., Liu, X., Yu, K.Q., Li, L.Z. and Chen, Y. (2022), "Seismic retrofitting of RC joints using steel cage and haunch with bolted steel plate", J. Struct., 43, 285-298. https://doi.org/10.1016/j.istruc.2022.06.056.
  7. Dong, Y.R., Xu, Z.D., Li, Q.Q., Xu, Y.S. and Chen, Z.H. (2019), "Seismic behavior and damage evolution for retrofitted RC frames using haunch viscoelastic damping braces", J. Eng. Struct., 199, 109583. https://doi.org/10.1016/j.engstruct.2019.109583.
  8. Emami, E., Kheyroddin, A. and Rezaifar, O. (2021), "Experimental and analytical investigation of arched steel haunches under cyclic loading", J. Eng. Struct., 246, 113041. https://doi.org/10.1016/j.engstruct.2021.113041.
  9. Fang, X., Bi, K., Hao, H., Zhou, Y., Chen, Z. and Cao, Y. (2023), "Hysteretic behaviours of a novel lead-viscoelastic coupling beam damper: Numerical analysis and Bouc-Wen based model", Struct., 57, 105178. https://doi.org/10.1016/j.istruc.2023.105178.
  10. GB 50011-2010 (2010), Code for Seismic Design of Buildings, Chinese Ministry of Housing and Urban Rural Development, Beijing, China.
  11. Ghasemi, A., Arkavazi, F. and Shakib, H. (2023), "Seismic fragility assessment of steel moment-resisting frames equipped with superelastic viscous dampers", Earthq. Struct., 25(5), 343-358. https://doi.org/10.12989/eas.2023.25.5.343.
  12. Golmoghany, M.Z. and Zahrai, S.M. (2021), "Improving seismic behavior using a hybrid control system of friction damper and vertical shear panel in series", Struct., 31, 369-379. https://doi.org/10.1016/j.istruc.2021.02.007.
  13. Guneyisi, E.M. and Azez, I. (2016), "Seismic upgrading of structures with different retrofitting methods", Earthq. Struct., 10(3), 589-611. https://doi.org/10.12989/eas.2016.10.3.589.
  14. JG/T209-2012 (2015), Dampers for Vibration Energy Dissipation of Buildings, Chinese Ministry of Housing and Urban Rural Development, Beijing, China.
  15. JGJ 297-2013 (2013), Technical Specification for Seismic Energy Dissipation of Buildings, Chinese Ministry of Housing and Urban Rural Development, Beijing, China.
  16. Lee, J. and Kim, J. (2015), "Seismic performance evaluation of moment frames with slit-friction hybrid dampers", Earthq. Struct., 9(6), 1291-1311. https://doi.org/10.12989/eas.2015.9.6.1291.
  17. Lin, Z., Xu, L. and Xie, X. (2022), "Development and seismic performance improvement of hybrid damping self-centering braced frame", J. Build. Eng., 52, 104388. https://doi.org/10.1016/j.jobe.2022.104388.
  18. Marchisella, A., Muciaccia, G., Sharma, A. and Eligehausen, R. (2021), "Experimental investigation of 3d RC exterior joint retrofitted with fully-fastened-haunch-retrofit-solution", J. Eng. Struct., 239, 112206. https://doi.org/10.1016/j.engstruct.2021.112206.
  19. Margaritis, T. and Akanshu, S. (2023), "Detailed 3D FE modeling approach for 2D and 3D beam-column joints retrofitted with fully fastened haunch retrofit solution including anchor behavior", J. Eng. Struct., 294, 116769. https://doi.org/10.1016/j.engstruct.2023.116769.
  20. Martinelli, P. and Mulas, M.G. (2010), "An innovative passive control technique for industrial precast frames", Eng. Struct., 32, 1123-1132. https://doi.org/10.1016/j.engstruct.2009.12.038.
  21. McCrum, D.P., Simon, J., Grimes, M., Broderick, B.M., Lim, J.B. and Wrzesien, A.M. (2019), "Experimental cyclic performance of cold-formed steel bolted moment resisting frames", J. Eng. Struct., 181, 1-14. https://doi.org/10.1016/j.engstruct.2018.11.063.
  22. Mohebbi, M. and Bakhshinezhad, S. (2022), "Seismic performance-based optimal design approach for structures equipped with SATMDs", Earthq. Struct., 22(1), 95-107. https://doi.org/10.12989/eas.2022.22.1.095.
  23. Nassiraei, H. (2019), "Local joint flexibility of CHS X-joints reinforced with collar plates in jacket structures subjected to axial load", Appl. Ocean Res., 93, 101961. https://doi.org/10.1016/j.apor.2019.101961.
  24. Nassiraei, H. (2019), "Static strength of tubular T/Y-joints reinforced with collar plates at fire induced elevated temperature", Marine Struct., 67, 102635. https://doi.org/10.1016/j.marstruc.2019.102635.
  25. Nassiraei, H. (2020), "Local joint flexibility of CHS T/Y-connections strengthened with collar plate under in-plane bending load: parametric study of geometrical effects and design formulation", Ocean Eng., 202, 107054. https://doi.org/10.1016/j.oceaneng.2020.107054.
  26. Nassiraei, H. (2022), "Geometrical effects on the LJF of tubular T/Y-joints with doubler plate in offshore wind turbines", Ship. Offshore Struct., 17, 481-491. https://doi.org/10.1080/17445302.2020.1835051.
  27. Nassiraei, H. (2023), "Probability distribution models for the ultimate strength of tubular T/Y-joints reinforced with collar plates at room and different fire conditions", Ocean Eng., 270, 113557. https://doi.org/10.1016/j.oceaneng.2022.113557.
  28. Nassiraei, H. (2024), "Probability distribution functions for the ultimate strength of X-joints with collar plates in compressive load at room and fire conditions", J. Struct., 59, 105703. https://doi.org/10.1016/j.istruc.2023.105703.
  29. Nassiraei, H. and Rezadoost, P. (2020), "Stress concentration factors in tubular T/Y-joints strengthened with FRP subjected to compressive load in offshore structures", Int. J. Fatigue, 140, 105719. https://doi.org/10.1016/j.ijfatigue.2020.105719.
  30. Nassiraei, H. and Rezadoost, P. (2021), "Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load", Eng. Struct., 236, 112041. https://doi.org/10.1016/j.engstruct.2021.112041.
  31. Nassiraei, H. and Yara, A. (2022), "Numerical analysis of local joint flexibility of K-joints with external plates under axial loads in offshore tubular structures", J. Marine Sci. Appl., 21, 134-144. https://doi.org/10.1007/s11804-022-00302-w.
  32. Quaglini, V., Pettorruso, C. and Bruschi, E. (2022), "Design and experimental assessment of a prestressed lead damper with straight shaft for seismic protection of structures", Geosci., 12(5), 182. https://doi.org/10.3390/geosciences12050182.
  33. Rodgers, G.W., Chase, J.G., Mander, J.B., Leach, N.C. and Denmead, C.S. (2007). "Experimental development, tradeoff analysis and design implementation of high force-to-volume damping technology", Bull. N.Z. Nat. Soc. Earthq. Eng., 40(2), 35-48.
  34. Veismoradi, S., Yousef-beik, S.M.M., Zarnani, P. and Quenneville, P. (2021), "Seismic strengthening of deficient RC frames using self-centering friction haunches", J. Eng. Struct., 248, 113261. https://doi.org/10.1016/j.engstruct.2021.113261.
  35. Wang, W., Xue, J.Y., Zhang, H.M. Zhou, Y., Xie, Q. and Li, F. (2009), "Seismic design and lessons learnt from the earthquake disaster of frame structures in 5.12 Wenchuan earthquake", J. World Earthq. Eng., 25(4), 131-135.
  36. Wang, Y.M., Wang, R.J. and Wang, T. (2023), "Capacity gradients and capacity fragility of code-conforming RC frame joints based on pseudo-static tests", J. Struct., 52, 742-751. https://doi.org/10.1016/j.istruc.2023.03.180.
  37. Wang, Y.Y. (2008), "Lessons learnt from building damages in the Wenchuan earthquake-seismic concept design of buildings", J. Build. Struct., 29(4), 20-25.
  38. Wu, B., Jiang, X.Q. and Lin, S.S. (2007), "Experimental study on RC beam-column joint equipped with partially energy dissipating braces", J. Earthq. Eng. Eng. Vib., 27(6), 223-229. https://doi.org/10.13197/j.eeev.2007.06.016.
  39. Zabihi, A., Tsang, H.H., Gad, E.F. and Wilson, J.L. (2018), "Seismic retrofit of exterior RC beam-column joint using diagonal haunch", J. Eng. Struct., 174, 753-767. https://doi.org/10.1016/j.engstruct.2018.07.100.
  40. Zhang, G., Xu, L.H. and Li, Z.X. (2021), "Theoretical and parametric studies of a self-centering modular steel structure connection", J. Eng. Struct., 247, 113146. https://doi.org/10.1016/j.engstruct.2021.113146.
  41. Zhang, G., Xu, L.H. and Xie, X.S. (2022), "Haunch connecting techniques in a self-centering modular steel structure connection system", J. Build. Eng., 62, 105389. https://doi.org/10.1016/j.jobe.2022.105389.
  42. Zhang, J., Liu, D., Liu, Z., Mo, L., Xiang, X. and Wang, Y. (2017), "Rotational behavior of bolted post-to-beam glulam connections with friction damped knee brace", J. Build. Eng., 76, 107215. https://doi.org/10.1016/j.jobe.2023.107215.
  43. Zhang, S.S. and Zhuang, Z. (2007), Composite Materials and Viscoelastic Mechanics, China Machine Press, Beijing, China.
  44. Zhou, Y., Yin, Q.L. and Lin, S.M. (2011), "Experimental investigation on seismic performance of RC frame structures with viscous damper energy dissipation haunch braces", J. Build. Eng., 32(11), 64-73. https://doi.org/10.14006/j.jzjgxb.2011.11.018.
  45. Zhuang, Z., You, X., Liao, J.H., Cen, S., Shen, X. and Liang, M. (2009), Finite Element Analysis and Application Based on ABAQUS, Tsinghua University Press, Beijing, China.