DOI QR코드

DOI QR Code

메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane

  • 성인호 (충북대학교 화학공학과) ;
  • 조경태 (충북대학교 화학공학과) ;
  • 이종대 (충북대학교 화학공학과)
  • In Ho Seong (Department of Chemical Engineering, Chungbuk National University) ;
  • Kyung Tae Cho (Department of Chemical Engineering, Chungbuk National University) ;
  • Jong Dae Lee (Department of Chemical Engineering, Chungbuk National University)
  • 투고 : 2024.02.27
  • 심사 : 2024.03.25
  • 발행 : 2024.04.10

초록

메탄의 수증기 개질 반응에서 Ni 기반 촉매에 귀금속 Ru 및 Pd을 조촉매로 첨가하여 촉매의 활성 및 수소 생산에 미치는 영향을 분석하였다. 합성된 촉매는 허니컴 구조의 금속 모노리스 구조체 표면에 코팅하여 수증기 메탄 개질 반응을 수행하였다. 촉매의 특성은 XRD, TPR 및 SEM으로 분석하였으며 개질 반응 후 가스를 포집하여 GC로 조성을 분석한 후 메탄의 전환율, 수소 수율 및 CO 선택도를 측정하였다. 0.5 wt%의 Ru 첨가는 Ni의 환원 특성을 개선하였고, 99.91%의 메탄 전환율로 향상된 촉매 활성을 나타내었다. 또한, 다양한 공정 조건에 따른 반응 특성을 분석하였으며, 800 ℃의 반응 온도, 10000 h-1 이하의 공간속도(GHSV), 3 이상의 H2O와 CH4의 비(S/C)에서 90% 이상의 메탄 전환율과 3.3 이상의 수소 수율을 얻을 수 있었다.

In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.

키워드

참고문헌

  1. L. Cai, T. He, Y. Xiang, and Y. Guan, Study on the reaction pathways of steam methane reforming for H2 production, Energy, 207, 118296 (2020).
  2. D. Pashchenko, First law energy analysis of thermochemical waste-heat recuperation by steam methane reforming, Energy, 142, 478-487 (2018).
  3. H. Zhang, Z. Sun, and Y. H. Hu, Steam reforming of methane: Current states of catalyst design and process upgrading, Renew. Sust. Energ., 149, 111330 (2021).
  4. M. A. Khan, R. Daiyan, P. Neal, N. Haque, I. MacGill, and R. Amal, A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & utilization, Int. J. Hydrog. Energy, 46, 22685-22706 (2021).
  5. P. Inbamrung, T. Sornchamni, C. Prapainainar, S. Tungkamani, P. Narataruksa, and G. N. Jovanovic, Modeling of a square channel monolith reactor for methane steam reforming, Energy, 152, 383-400 (2018).
  6. J. O. Abe, A. P. I. Popoola, E. Ajenifuja, and O. M. Popoola, Hydrogen energy, economy and storage: review and recommendation, Int. J. Hydrog. Energy, 44, 15072-15086 (2019).
  7. IEA, Energy technology perspectives 2020, IEA, Paris (2020).
  8. A. Zamaniyan, H. Ebrahimi, and J. S. S. Mohammadzade, A unified model for top fired methane steam reformers using three-dimensional zonal analysis, Chem. Eng. Process., 47, 946-956 (2008).
  9. A. E. Awadallah, D. S. El-Desouki, N. A. K. Aboul-Gheit, A. H. Ibrahim, and A. K. Aboul-Gheit, Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to COx-free hydrogen and carbon nanomaterials, Int. J. Hydrog. Energy, 41, 16890-16902 (2016).
  10. R. Khothari, D. Buddhi, and R. L. Sawhney, Comparison of environmental and economic aspects of various hydrogen production methods, Renew. Sust. Energ., 12, 553-563 (2008).
  11. U. P. M. Ashik, W. M. A. W. Daud, and H. F. Abbas, Production of greenhouse gas free hydrogen by thermocatalytic decomposition of methane - A review, Renew. Sust. Energ., 44, 221-256 (2015).
  12. Y. Tang, Y. Wei, Z. Wang, S. Zhang, Y. Li, L. Nguyen, Y. Li, Y. Zhou, W. Shen, and F. F. Tao, Synergy of single-atom Ni1 and Ru1 sites on CeO2 for dry reforming of CH4, J. Am. Chem. Soc., 141, 7283-7293 (2019).
  13. M. Boudjeloud, A. Boulahouache, C. Rabia, and N. Salhi, La-doped supported Ni catalysts for steam reforming of methane, Int. J. Hydrog. Energy, 44, 9906-9913 (2019).
  14. J. Guo, H. Lou, L. Mo, and X. Zheng, The reactivity of surface active carbonaceous species with CO2 and its role on hydrocarbon conversion reactions, J. Mol. Catal., 316, 1-7 (2010).
  15. F. M/ Cano, L. F. Lundegaard, R. R. Tiruvalam, H. Falsig, and M. S. Skjoth-Rasmussen, Improving the sintering resistance of Ni/Al2O3 steam-reforming catalysts by promotion with noble metals, Appl. Catal. A-Gen., 498, 117-125 (2015).
  16. A. D. Shejale and G. D. Yadav, Noble metal promoted Ni-Cu/La2O3-MgO catalyst for renewable and enhanced hydrogen production via steam reforming of bio-based n-butanol: effect of promotion with Pt, Ru and Pd on catalytic activity and selectivity, Clean. Technol. Environ. Policy, 21, 1323-1339 (2019).
  17. P. O. Vargas, N. A. F. Gonzalez, R. M. Navarro, J. L. G. Fierro, C. H. Campos, and P. Reyes, Improved stability of Ni/Al2O3 catalysts by effect of promoters (La2O3, CeO2) for ethanol steam-reforming reaction, Catal. Today, 259, 27-38 (2016).
  18. M. Garcia-Dieguez, I. S. Pieta, M. C. Herrera, M. A. Larrubia, and L. J. Alemany, Nanostructured Pt- and Ni-based catalysts for CO2-reforming of methane, J. Catal., 270, 136-145 (2010).
  19. S. C. Baek, K. W. Jun, Y. J. Lee, J. D. Kim, D. Y. Park, and K. Y. Lee, Ru/Ni/MgAl2O4 catalysts for steam reforming of methane: Effects of Ru content on self-activation property, Res. Chem. Intermed., 38, 1225-1236 (2012)
  20. B. Steinhauer, M. R. Kasireddy, J. Radnik, and A. Martin, Development of Ni-Pd bimetallic catalysts for the utilization of carbon dioxide and methane by dry reforming, Appl. Catal. A-Gen., 366, 333-341, (2009)
  21. I. Pedroarean, L. Grande, J. J. Torrez-Herera, S. A. Korili, and A. Gil, Analysis by temperature-programmed reduction of the catalytic system Ni-Mo-Pd/Al2O3, Fuel, 334, 126789 (2023).
  22. A. I. Tsiotsias, N. D. Charisiou, C. Italiano, G. D. Ferrante, L. Pino, A. Vita, V. Sebastian, S. J. Hinder, M. A. Baker, A. Sharan, N. Singh, K. Polychronopoulou, and M. A. Goula, Ni-noble metal bimetallic catalysts for improved low temperature CO2 methanation, Appl. Surf. Sci., 646, 158945 (2024).
  23. J. B. Choi, J. S. Im, S. C. Kang, Y. S. Lee, and C. W. Lee, Effect of metal-support interaction in Ni/SiO2 catalysts on the growth of carbon nanotubes by methane decomposition, Carbon Lett., 33, 477-488 (2023).
  24. D. Wu, Y. Zhang, and Y. Li, Mechanical stability of monolithic catalysts: Improving washcoat adhesion by FeCrAl alloy substrate treatment, J. Ind. Eng. Chem., 56, 175-184 (2017).