DOI QR코드

DOI QR Code

열처리에 의해 제조된 강아지풀 기반 리튬 이온 이차전지용 탄소 음극재의 전기화학적 특성

Electrochemical Characteristics of Setaria viridis-Based Carbon Anode Materials Prepared by Thermal Treatment for Lithium-Ion Secondary Batteries

  • 김동기 (충남대학교 응용화학공학과) ;
  • 임채훈 (충남대학교 응용화학공학과) ;
  • 명성재 (충남대학교 응용화학공학과) ;
  • 하나은 (충남대학교 응용화학공학과) ;
  • 민충기 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Dong Ki Kim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chaehun Lim (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Seongjae Myeong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Naeun Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Chung Gi Min (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Young-Seak Lee (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2024.03.07
  • 심사 : 2024.03.27
  • 발행 : 2024.04.10

초록

바이오매스 활용을 높이기 위하여, 열처리 공정을 통해 강아지풀 기반 리튬 이온 이차 전지용 탄소음극재(SV-C)를 제조한 뒤 전기화학적 성능을 고찰하였다. 강아지풀의 열처리 온도가 750 ℃로 낮을 때 낮은 결정성과 높은 비표면적(126 m2/g)과 함께, 표면에 많이 존재하는 산소의 (-) 전하가 리튬을 끌어당김으로 인하여 비정전용량(1003.3 mAh/g, at 0.1 C)이 높지만, 용량 유지율은 61.0% (at 500 cycles and 1 C)로 낮아지는 것으로 여겨진다. 또한, 열처리온도가 1150 ℃로 증가하면 탄소층이 축합되어 배열이 우수해짐에 따라 구조 결함이 감소하여 기공이 크게 줄어 비표면적(32 m2/g)이 감소한 것으로 확인되었다. 또한, 음극재 표면결함이 감소하여 결정성이 높아지게 되면, 용량 유지율은 89.7% (at 500 cycles and 1 C)로 높지만, 결함 정도가 작아 활성점이 줄어들어 비정전용량이 471.7 mAh/g로 매우 낮은 것으로 여겨진다. 본 연구 범위에서, 열처리 온도에 따라 제조된 강아지풀 기반 탄소음극재의 경우, 비표면적에 비해 표면 산소 함량과 결정성 등이 음극재의 전기화학적 특성에 더 높은 신뢰도를 갖는 것으로 나타났다.

In order to increase the utilization of biomass, an electrochemical performance was considered after manufacturing a carbon anode material (SV-C) for a Setaria viridis-based lithium ion secondary battery through a heat treatment process. When the heat treatment temperature of the Setaria viridis is as low as 750 ℃, the capacitance (1003.3 mAh/g, at 0.1 C) is high due to the negative (-) charge of oxygen present on the surface attracting lithium, along with the low crystallinity and high specific surface area (126 m2/g), but the capacity retention rate is believed to be as low as 61.0% (at 500 cycles and 1 C). In addition, it was confirmed that when the heat treatment temperature increased to 1150 ℃, the carbon layer was condensed to be excellent in arrangement, and the structural defects were reduced, resulting in a significant reduction in the specific surface area (32 m2/g) of the pores. Furthermore, when the surface defects of the anode material are reduced and the crystallinity is increased, the capacity retention rate is as high as 89.7% (at 500 cycles and 1 C), but the degree of defects is small, the active point is reduced, and the specific capacity is considered to be very low at 471.7 mAh/g. In the scope of this study, it was found that in the case of the Setaria viridis-based carbon anode material manufactured according to the heat treatment temperature, the surface oxygen content and crystallinity have higher reliability on the electrochemical properties of the anode material than the specific surface area.

키워드

과제정보

본 연구는 한국 산업기술평가관리원의 탄소산업기반조성사업(고순도 가스 분리용 탄소분자체 및 시스템 제조기술 개발: 20016789)의 지원에 의하여 수행하였으며 이에 감사드립니다.

참고문헌

  1. C. Lim, S. Ha, N. Ha, S. G. Jeong, and Y. S. Lee., Plasma treatment of CFX: the effect of surface chemical modification coupled with surface etching, Carbon Lett., 34, 611-617 (2023).
  2. S. Ha, D. Kim, C. H. Kwak, and Y. S. Lee., Surface modification technology and research trends of separators for lithium-ion Batteries, Appl. Chem. Eng., 33, 343-351 (2022).
  3. E. V. Beletskii, M. A. Kamenskii, E. V. Alekseeva, A. I. Volkov, D. A. Lukyanov, D. V. Anishchenko, A. O. Radomtseu, A. A. Reveguk, O. V. Glumov, and O. V. Levin, One-step atmospheric plasma-assisted synthesis of FeOOH and FeOOH/ graphite high performance anode materials for lithium-ion batteries, Appl. Surf. Sci., 597, 153698 (2022).
  4. J. Cui, H. Zhang, Y. Liu, S. Li, W. He, J. Hu, and J. Sun, Facile, economical and environment-friendly synthesis process of porous N-doped carbon/SiOx composite from rice husks as high-property anode for Li-ion batteries, Electrochim. Acta, 334, 135619 (2020).
  5. Y. Ju, J. A. Tang, K. Zhu, Y. Meng, C. Wang, G. Chen, Y. Wei, and Y. Gao, SiOx/C composite from rice husks as an anode material for lithium-ion batteries, Electrochim. Acta, 191, 411-416 (2016).
  6. J. Dan, C. Jin, L. Wen, G. Xu, X. Li, F. Sun, L. Zhou, and Z. Yue, A double-layer-coated graphite anode material for high-rate lithium-ion batteries, Solid State Sci., 141, 107220 (2023).
  7. D. Kim, C. Lim, S. Kim, and Y. S. Lee, Fabrication and the electrochemical characteristics of petroleum residue-based anode materials, Appl. Chem. Eng., 33, 496-501 (2022).
  8. X. Yang, C. Zhan, X. Ren, C. Wang, L. Wei, Q. Yu, D. Xu, D. Nan, R. Lv, W. Shen, F. Kang, and Z. H. Huang, Nitrogen-doped hollow graphite granule as anode materials for high-performance lithium-ion batteries, J. Solid State Chem., 303, 122500 (2021).
  9. Y. Cao, M. Su, T. Bi, Y. Zhou, X. Zhan, and Q. Lin, Three-dimensional graphitic hierarchical porous carbon-supported SnOx@ nitrogen-doped carbon composite as high-performance lithium ion battery anode material, J. Energy Storage, 76, 109783 (2024).
  10. G. Shen, B. Li, Y. Xu, X. Chen, S. Katiyar, L. Zhu, L. Xie, Q. Han, X. Qiu, X. Wu, and X. Cao, Waste biomass garlic stem-derived porous carbon materials as high-capacity and long-cycling anode for lithium/sodium-ion batteries, J. Colloid Interface Sci., 653, 1588-1599 (2024).
  11. J. H. Lin and C. Y. Chen, Thickness-controllable coating on graphite surface as anode materials using glucose-based suspending solutions for lithium-ion battery, Surf. Coat. Technol., 436, 128270 (2022).
  12. S. Ha, S. G. Jeong, C. Lim, C. G. Min, and Y. S. Lee, Application of thermally fluorinated multi-wall carbon nanotubes as an additive to an Li4Ti5O12 lithium ion battery, Nanomaterials, 13, 995 (2023).
  13. K. Chen, F. Gu, J. Xiong, H. Yu, Y. Du, and Y. Song, NiO/nitrogen-oxygen co-doped carbon nanoflower composites based on covalent organic frameworks for lithium-ion battery anodes, J. Alloys Compd., 924, 166524 (2022).
  14. T. Rong, Y. Yuan, H. Yu, H. Zuo, and Q. Xue, Research on anthracite-derived graphite flakes prepared by molten salt electrolysis as anode materials for high-performance lithium-ion batteries, Fuel Process. Technol., 252, 107992 (2023).
  15. F. Zhao, M. Zhao, Y. Dong, L. Ma, Y. Zhang, S. Niu, and L. Wei, Facile preparation of micron-sized silicon-graphite carbon composite as anode material for high-performance lithium-ion batteries, Powder Technol., 404, 117455 (2022).
  16. Z. Ren, S. Liu, J. Chen, Y. Yu, Q. Shang, S. Fakudze, C. Liu, P. Zhou, and Q. Chu, One-step synthesis of interface-coupled Si@ SiOX @C from whole rice-husks for high-performance lithium storage, Electrochim. Acta, 402, 139556 (2022).
  17. N. Liu, K. Huo, M. T. McDowell, J. Zhao, and Y. Cui, Rice husks as a sustainable source of nanostructured silicon for high performance Li-ion battery anodes, Sci. Rep., 3, 1919 (2013).
  18. S. Ha, K. Hwang, D. Kim, S. Yoon, and Y. S. Lee, Multiple performance enhancements with one effect: Improving the electrochemical performance of SiOx coated with specific aromatic compounds, J. Ind. Eng. Chem., 117, 188-195 (2023).
  19. T. Rong, Y. Yuan, H. Yu, H. Zuo, and Q. Xue, Research on anthracite-derived graphite flakes prepared by molten salt electrolysis as anode materials for high- performance lithium-ion batteries, Fuel Process. Technol., 252, 107992 (2023).
  20. Z. Cheng, B. Tu, Y. Wu, and H. Huang, High-pressure and high-temperature synthesis of black phosphorus-graphite anode material for lithium-ion batteries, Electrochim. Acta, 473, 143510 (2024).
  21. D. Feng, Y. Li, X. Qin, L. Zheng, B. Guo, W. Dai, N. Song, L. Liu, Y. Xu, Z. Tang, and T. Gao, Biomass derived porous carbon anode materials for lithium-ion batteries with high electrochemical performance, Int. J. Electrochem. Sci., 19, 100488 (2024).
  22. J. Niu, Y. Liu, X. Wang, J. Liu, Z. Zhao, X. Liu, K. K. Ostrikov, Biomass-derived bifunctional cathode electrocatalyst and multiadaptive gel electrolyte for high-performance flexible Zn-Air batteries in wide temperature range, Small, 19, e2303727 (2023).
  23. S. Ha, S. G. Jeong, S. Myeong, C. Lim, and Y. S. Lee, High-performance CO2 adsorption of jellyfish-based activated carbon with many micropores and various heteroatoms, J. CO2 Util., 76, 102589 (2023).
  24. B. Wang, H. Liu, Y. Liu, Z. Sun, X. Chen, and A. Hein, Patterns of spread and adoption of millet agriculture along the eastern rim of the Tibetan Plateau: Archaeobotanical evidence from Houzidong, Southwest China (4200-4000 cal. BP), J. Archaeol. Sci., 35, 100448 (2023).
  25. C. Chen, Y. Huang, Z. Meng, J. Zhang, M. Lu, P. Liu, and T. Li, Insight into the rapid sodium storage mechanism of the fiber-like oxygen-doped hierarchical porous biomass derived hard carbon, J. Colloid Interface Sci., 588, 657-669 (2021).
  26. R. Yan, K. Wang, X. Tian, X. Li, T. Yang, X. Xu, Y. He, S. Lei, and Y. Song, Heteroatoms in situ doped hierarchical porous hollow activated carbons for high performance supercapacitor, Carbon Lett., 30, 331-344 (2020).
  27. Y. Wang, D. Bai, X. Luo, and Y. Zhang, Effects of Setaria viridis on heavy metal enrichment tolerance and bacterial community establishment in high-sulfur coal gangue, Chemosphere, 351, 141265 (2024).
  28. C. Lim, S. G. Jeong, S. Ha, N. Ha, S. Myeong, and Y. S. Lee, Unique CO2 adsorption of pine needle biochar-based activated carbons by induction of functionality transition, J. Ind. Eng. Chem., 124, 201-210 (2023).
  29. P. Rajkumar, V. Thirumal, G. Radhika, K. Yoo, and J. Kim, Facile preparation of bio waste derived porous carbon for high performance electrode material for energy storage applications: Li ion capacitor and Li ion batteries, Biomass Convers. Biorefin., Doi:10. 1007/s13399-024-05300-2.2024.01.05. https://doi.org/10.1007/s13399-024-05300-2.2024.01.05
  30. C. Lim, C. H. Kwak, Y. Ko, and Y. S. Lee, Mesophase pitch production from fluorine-pretreated FCC decant oil, Fuel, 328, 125244 (2022).
  31. J. H. Cho, J. H. Kim, Y. S. Lee, J. S. Im, and S. C. Kang, Preparation and characterization of pitch based coke with anisotropic microstructure derived from pyrolysis fuel oil, Appl. Chem. Eng., 32, 640-646 (2021).
  32. C. Lim, S. Ha, S. Myeong, N. Ha, C. G. Min, and Y. S. Lee, Production of needle cokes via mild condition co-pyrolysis of FCC-DO and PFPE, Fuel, 360, 130622 (2024).
  33. T. K. Whang, J. H. Kim, J. S. Im, and S. C. Kang, Effect of low temperature heat treatment on the physical and chemical properties of carbon anode materials and the performance of secondary batteries, Appl. Chem. Eng., 32, 83-90 (2021).
  34. J. U. Hwang, J. D. Lee, and J. S. Im, Electrochemical properties of needle coke through a simple carbon coating process for lithium ion battery, Appl. Chem. Eng., 31, 514-519 (2020).
  35. N. Ha, S. G. Jeong, C. Lim, S. Ha, C. G. Min, Y. Choi, and Y. S. Lee, Preparation and electrochemical characteristics of waste-tire char-based CFX for lithium-ion primary batteries, Carbon Lett., 33, 1013-1018 (2023).
  36. S. Ha, C. Lim, C. G. Min, S. Myeong, N. Ha, and Y. S. Lee, Improved energy and power density of a Li/CFX primary battery through control of the C-F bonds with thermobaric modifications, J. Ind. Eng. Chem., 133, 525-532 (2024).
  37. C. Lim, Y. Ko, C. H. Kwak, S. Kim, and Y. S. Lee, Mesophase pitch production aided by the thermal decomposition of polyvinylidene fluoride, Carbon Lett., 32, 1329-1335 (2022).
  38. M. J. A. Ahmad, A. Telfah, Q. M. Al-Bataineh, C. J. Tavares, and R. Hergenroder, Nanoparticles positioning effect on properties of (PS-PANI/NiNPs) nanocomposite films, Polym. Adv. Technol., 34, 110-119 (2023).
  39. N. Ha, C. Lim, C. G. Min, S. Myeong, and Y. S. Lee, Improved discharge capacities for lithium ion batteries containing needle cokes doped with oxygen via ozonation, J. Mater. Sci.: Mater. Electron., 35, 252 (2024).
  40. V. Bernal, L. Giraldo, and J. C. Moreno-Pirajan, Physicochemical properties of activated carbon : Their effect on the absorption of pharmaceutical compounds and adsorbate-adsorbent interactions, C, 4, 62 (2018).
  41. G. I. Razdyakonova, O. Kokhanovskaya, V. A. Likholobov, Influence of environmental conditions on carbon black oxidation by reactive oxygen intermediates, Procedia Eng., 113, 43-50 (2015).