DOI QR코드

DOI QR Code

Designing an Evaluation Method for the in-situ Impact Strength of Rollable Devices

  • Hyojung Son (Department of Hydrogen and Renewable Energy, Kyungpook National University) ;
  • Ki-Yong Lee (FlexiGO Inc.) ;
  • Byoung-Seong Jeong (Department of Hydrogen and Renewable Energy, Kyungpook National University)
  • Received : 2024.03.17
  • Accepted : 2024.03.25
  • Published : 2024.04.10

Abstract

In this study, a methodology for evaluating impact strength in rollable devices was developed, focusing on measuring impact strength and evaluating rolling and unrolling durability simultaneously, with findings reported from tests on a real demonstration unit. The study utilized a flexible and rollable polyimide (PI) substrate for the evaluations. The chosen parameters for this methodology were a flat-type impactor, weights of 300 g, 500 g, and 1000 g, a rolling shaft ranging from 30 R to 5 R, and the positioning of the impactor. The results revealed that the difference in defect rates when comparing the 300 g and 500 g weights was minimal. However, the adoption of a 1000 g weight markedly increased the defect count due to damage to the PI film's surface. Furthermore, an uptick in rolling and unrolling cycles led to more pronounced surface scratches on the PI film. These methods and findings are poised to make a substantial contribution towards refining reliability testing for a wide array of rollable device applications, including smartphones, watches, pads, and wearable technology.

Keywords

Acknowledgement

This work was supported by the Industrial Technology Innovation Program funded by the Ministry of Trade, industry & Energy (MOTIE, Korea) [No. 20015778].

References

  1. T. Riedl, Transparent OLED displays. In: A. Facchetti and Tobin J. Marks (eds.). Transparent Electronics: From Synthesis to Applications, 299-323, John Wiley & Sons, New York, USA (2010).
  2. G. Hong, X. Gan, C. Leonhardt, Z. Zhang, J. Seibert, J. M. Busch, and S. Brase, A brief history of OLEDs-Emitter development and industry milestones, Adv. Mater., 33, 2005630 (2021).
  3. Y. Lee, H. Cho, H. Yoon, H. Kang, H. Yoo, H. Zhou, and Y. Yun, Advancements in electronic materials and devices for stretchable displays, Adv. Mater. Technol., 8, 2201067 (2023).
  4. S. Kwon, H. Kim, S. Choi, E. Jeong, D. Kim, S. Lee, and K. Choi, Weavable and highly efficient organic light-emitting fibers for wearable electronics: A scalable, low-temperature process, Nano Lett., 18, 347-356 (2018).
  5. K. Behrman, MicroLED and Microdevices for Next-Generation Display Systems, PhD Dissertation, Columbia University, New York, USA (2021).
  6. J. Kim, P. Gutruf, A. Chiarelli, S. Heo, K. Cho, Z. Xie, and J. Rogers, Miniaturized battery-free wireless systems for wearable pulse oximetry, Adv. Funct. Mater., 27, 1604373 (2017).
  7. R. Horng, H. Chien, F. Tarntair, and D. Wuu, Fabrication and study on red light micro-LED displays, IEEE J. Electron Devices Soc., 6, 1064-1069 (2018).
  8. J. Koo, D. Kim, H. Shim, T. Kim, and D. Kim, Flexible and stretchable smart display: Materials, fabrication, device design, and system integration, Adv. Funct. Mater., 28, 1801834 (2018).
  9. G. Crawford, Flexible flat panel display technology. In: G. Crawford (ed.). Flexible Flat Panel Displays, 1-9, John Wiley & Sons, Ltd, New Jersey(Hoboken), US (2005).
  10. W. Wu, W. Poh, J. Lv, S. Chen, D. Gao, F. Yu, and P. Lee, Self-powered and light-adaptable stretchable electrochromic display, Adv. Energy Mater., 13, 2204103 (2023).
  11. C. Gu, A. Jia, Y. Zhang, and S. Zhang, Emerging electrochromic materials and devices for future displays, Chem. Rev., 122, 14679-14721 (2022).
  12. M. Ha, J. Choi, B. Park, and K. Han, Highly flexible cover window using ultra-thin glass for foldable displays, J. Mech. Sci. Technol., 35, 661-668 (2021).
  13. D. Kim, S. Kim, G. Lee, J. Yoon, S. Kim, and J. Hong, Fabrication of practical deformable displays: Advances and challenges, Light Sci. Appl., 12, 61 (2023).
  14. E. Jeong, J. Kwon, K. Kang, S. Jeong, and K. Choi, A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs, J. Inf. Display, 21, 19-32 (2020).
  15. K. Han, W. Lee, Y. Kim, J. Kim, B. Choi, and J. Park, Mechanical durability of flexible/stretchable a-IGZO TFTs on PI island for wearable electronic application, ACS Appl. Electron. Mater., 3, 5037-5047 (2021).
  16. J. Kim, D. Kwon, and J. Myoung, Rollable and transparent subpixelated electrochromic displays using deformable nanowire electrodes with improved electrochemical and mechanical stability, Chem. Eng. J., 387, 124145 (2020).
  17. J. Lee, Z. Gao, D. Fu, and X. Yan, Flexible printed OLED TV display technology: It's TV mobiles, SID Sym. Dig. Tech. Papers, 53, 993-997 (2022).
  18. J. Nam, S. Lee, M. Han, and H. Lee, Improved stack structure of rollable display to prevent delamination and permanent deformation, Int. J. Precis. Eng. Manuf., 22, 671-678 (2021).
  19. J. Mao, J. Yuan, Z. Guo, P. Tian, J. Zhang, and Q. Zhang, Enhancing bending performance of ultrathin flexible glass through chemical strengthening, Int. J. Appl. Glass Sci, https://doi.org/10.1111/ijag.16659.
  20. A. Plichta, A. Weber, and A. Habeck, Ultra thin flexible glass substrates, MRS Online Proc. Libr., 769, H9-1 (2003).
  21. G. Macrelli, A. Varshneya, and J. Mauro, Ultra-thin glass as a substrate for flexible photonics, Opt. Mater., 106, 109994 (2020).
  22. W. Yang, Z. Zhang, W. Ming, L. Yin, and G. Zhang, Study on shape deviation and crack of ultra-thin glass molding process for curved surface, Ceram. Int. 48, 6767-6779 (2022).
  23. N. Shehata, R. Nair, R. Boualayan, I. Kandas, A. Masrani, E. Elnabawy, and A. H. Hassanin, Stretchable nanofibers of polyvinylidenefluoride (PVDF)/thermoplastic polyurethane (TPU) nanocomposite to support piezoelectric response via mechanical elasticity, Sci. Rep., 12, 8335 (2022).
  24. Y. Mukai, S. Li, and M. Suh, 3D-printed thermoplastic polyurethane for wearable breast hyperthermia, Fash. Text., 8, 1-12 (2021).
  25. T. Xu, W. Shen, X. Lin, and Y. M. Xie, Mechanical properties of additively manufactured thermoplastic polyurethane (TPU) material affected by various processing parameters, Polymers, 12, 3010 (2020).
  26. A. Boubakri, N. Guermazi, K. Elleuch, and H. Ayedi, Study of UV-aging of thermoplastic polyurethane material, Mater. Sci. Eng. A, 527, 1649-1654 (2010).
  27. X. Liu, M. Zheng, Q. Chi, Y. Zhang, Z. Dang, G. Chen, and J. Zha, High-temperature energy storage performances of isomer-like polyimide and its thermoplastic polyurethane blending system, J. Mater. Chem. C, 10, 17326-17335 (2022).
  28. Y. Shi, A. Hu, Z. Wang, K. Li, and S. Yang, Closed-cell rigid polyimide foams for high-temperature applications: The effect of structure on combined properties, Polymers, 13, 4434 (2021).
  29. O. Tafreshi, S. Ghaffari-Mosanenzadeh, S. Karamikamkar, Z. Saadatnia, S. Kiddell, C. Park, and H. Naguib, Novel, flexible, and transparent thin film polyimide aerogels with enhanced thermal insulation and high service temperature, J. Mater. Chem. C, 10, 5088-5108 (2022).
  30. S. Yan, W. Chen, W. Yan, M. Huang, C. Chen, Z. Xu, and C. Yi, Optical transparency and light colour of highly soluble fluorinated polyimides derived from a novel pyridine-containing diamine m, p-3FPAPP and various aromatic dianhydrides, Des. Monomers Polym., 14, 579-592 (2011).
  31. K. Watanabe, M. Kaneko, X. Zhong, K. Takada, T. Kaneko, M. Kawai, and T. Mitsumata, Effect of water absorption on electric properties of temperature-resistant polymers, Polymers, 16, 521 (2024).
  32. Kapton General Specifications: DuPontTM Kapton(R) Polyimide Film[Website]. (2021). https://www.dupont.com/electronics-industrial/kapton-hn.html.
  33. ASTM D6110-04: Standard test method for determining the Charpy impact resistance of notches specimens of plastics, ASTM International (2004).
  34. ASTM D256-10: Standard test method for determining the Izod pendulum impact resistance of plastics, ASTM International (2018).
  35. SAMSUNG Foldable OLED: Folding test under extreme cold conditions[Website]. (2021, Aug 17). https://news.samsungdisplay.com/28705/.