DOI QR코드

DOI QR Code

A Comprehensive Analysis of 3D Body Scanning vs. Manual Measurements in a Large-Scale Anthropometric Survey -Insights from the 8th Size Korea Project-

대규모 인체치수조사 사업에서 3차원 측정치와 직접측정치의 차이 분석 -제8차 사이즈코리아 사업을 중심으로-

  • Sunmi Park (Dept. of Fashion Design, Konkuk University)
  • 박선미 (건국대학교 패션디자인학과)
  • Received : 2023.08.23
  • Accepted : 2023.11.23
  • Published : 2024.04.30

Abstract

This study analyzed differences between three-dimensional (3D) body scanning and manual measurements, aiming to assess whether 3D scanning can replace traditional anthropometric tools, such as tape measures and calipers. Data from 4,478 participants in the 8th Size Korea Project were analyzed, covering 43 measurement items. Since Given that the 3D and manual measurements were performed on the same subjects in the 8th Size Korea Project, it was possible to determine the correlation more accurately between the two measurement methods more accurately. Using Applying ISO 20685-1(2018) standards, 15 out of the 43 items fell within allowable error limits. When classified into six types, "small circumferences" and "segment lengths" showed averages of 3.35 mm and 3.10 mm, respectively, within acceptable range. "Body heights" and "body depths" slightly exceeded the limit, with averages of 5.28 mm and 6.58 mm. "Body widths" and "large circumferences" surpassed the limit, with means of 16.77 mm and 16.18 mm. The study offers an objective basis to for validate validating 3D measurements' measurements' reliability and accuracy, addressing various industries' needs for information on the human body's dimensions information.

Keywords

Acknowledgement

이 논문은 2022학년도 건국대학교의 연구년 교원 지원에 의하여 연구되었음.

References

  1. Albrecht, G. H. (1983). Humidity as a source of measurement error in osteometrics. American Journal of Physical Anthropology, 60(4), 517-521. https://doi.org/10.1002/ajpa.1330600414
  2. Anand, N., & Tiwari, M. (2022, October 25-26). INDIAsize - Planning & Execution of National Sizing Survey of India [3DBODY. TECH 2022 International Conference and Exhibition]. 3D Body Scanning and Processing Technologies, Lugano, Switzerland. https://www.3dbody.tech/cap/abstracts/2022/2238anand.html
  3. Ben Azouz, Z., Rioux, M., Shu, C., & Lepage, R. (2006). Characterizing human shape variation using 3D anthropometric data. The Visual Computer, 22, 302-314.
  4. Bennett, K. A., & Osborne, R. H. (1986). Interobserver measurement reliability in anthropometry. Human Biology, 58(5), 751-759.
  5. Bougourd, J. P., Dekker, L., Ross, P. G., & Ward, J. P. (2000). A comparison of women's sizing by 3D electronic scanning and traditional anthropometry. Journal of the Textile Institute, 91(2), 163-173. https://doi.org/10.1080/00405000008659536
  6. Branson, R. S., Branson, R. S., Vaucher, Y. E., Harrison, G. G., Harrison, G. G., Vargas, M., & Thies, C. (1982). Inter-and intra-observer reliability of skinfold thickness measurements in newborn infants. Human Biology, 54(1), 137-143.
  7. Cameron, N. (2022). The measurement of human growth. In J. Doe (Ed.), Human Growth and Development (pp. 317-345). Croom Helm.
  8. Chumlea, W. C., Roche, A. F., & Rogers, E. (1984). Replicability for anthropometry in the elderly. Human Biology, 56(2), 329-337.
  9. Chung, J., Nam, Y.-J., & Park, J. (2019). Analysis of difference between direct measurement and 3-D automatic measurement according to classification of side figure of elderly women. Fashion & Textile Research Journal, 21(5), 627-639. https://doi.org/10.5805/SFTI.2019.21.5.627
  10. Daniell, N. (2008). A comparison of the accuracy of the Vitus Smart® and Hamamatsu Body Line® 3D whole-body scanners. Routledge.
  11. Gordon, C. C., Blackwell, C. L., Bradtmiller, B., Parham, J. L., Barrientos, P., Paquette, S. P., & Kristensen, S. (2014). 2012 anthropometric survey of us army personnel: Methods and summary statistics. Army Natick Soldier Research Development and Engineering Center MA. https://dacowits.defense.gov/LinkClick.aspx?fileticket=EbsKcm6A10U%3D&portalid=48
  12. Han, H., & Nam, Y. (2009). A comparative analysis of the difference between 3D body scan measurements and physical measurements by gender-5th size korea adult data. Journal of the Korean Society of Clothing and Textiles, 33(8), 1190-1202.
  13. Han, H., Nam, Y., & Choi, K. (2010). Comparative analysis of 3D body scan measurements and manual measurements of Size Korea adult females. International Journal of Industrial Ergonomics, 40(5), 530-540. https://doi.org/10.1016/j.ergon.2010.06.002
  14. Hotzman, J., Gordon, C. C., Bradtmiller, B., Corner, B. D., Mucher, M., Kristensen, S., & Blackwell, C. L. (2011). Measurer's handbook: US army and marine corps anthropometric surveys, 2010-2011. Army Natick Soldier Research Development and Engineering Center MA. https://apps.dtic.mil/sti/pdfs/ADA548497.pdf
  15. ISO 20685-1. (2018). 3-D scanning methodologies for internationally compatible anthropometric databases - Part 1: Evaluation protocol for body dimensions extracted from 3-D body scans. International Standard Organisation, Geneva. https://www.iso.org/standard/63260.html
  16. ISO 7250-1. (2017). Basic human body measurements for technological design - Part 1: Body measurement definitions and landmarks. International Standard Organisation, Geneva. https://www.iso.org/standard/65246.html
  17. Istook, C. L., & Hwang, S.-J. (2001). 3D body scanning systems with application to the apparel industry. Journal of Fashion Marketing and Management, 5(2), 120-132.
  18. Jamison, P. L., & Zegura, S. L. (1974). A univariate and multivariate examination of measurement error in anthropometry. American Journal of Physical Anthropology, 40(2), 197-203. https://doi.org/10.1002/ajpa.1330400206
  19. Johnston, F. E., & Mack, R. W. (1985). Interobserver reliability of skinfold measurements in infants and young children. American Journal of Physical Anthropology, 67(3), 285-289. https://doi.org/10.1002/ajpa.1330670314
  20. Kemper, H. C. G., & Pieters, J. J. L. (1974). Comparative study of anthropometric measurements of the same subjects in two different institutes. American Journal of Physical Anthropology, 40(3), 341-343. https://doi.org/10.1002/ajpa.1330400305
  21. Kennedy, S., Hwaung, P., Kelly, N., Liu, Y. E., Sobhiyeh, S., Heo, M., Shepherd, J. A., & Heymsfield, S. B. (2020). Optical imaging technology for body size and shape analysis: Evaluation of a system designed for personal use. European Journal of Clinical Nutrition, 74(6), 920-929.
  22. Kim, J. Y., You, J. W., & Kim, M. S. (2017). South Korean anthropometric data and survey methodology: 'Size Korea' project. Ergonomics, 60(11), 1586-1596. https://doi.org/10.1080/00140139.2017.1329940
  23. Size Korea. (2021). 제 8차 인체치수조사보고서 [The 8th Size Korea anthropometric survey report]. Korean Agency for Technology and Standards. https://sizekorea.kr/human-info/meas-report?measDegree=8
  24. Kouchi, M., & Mochimaru, M. (2011). Errors in landmarking and the evaluation of the accuracy of traditional and 3D anthropometry. Applied Ergonomics, 42(3), 518-527. https://doi.org/10.1016/j.apergo.2010.09.011
  25. Kouchi, M., Mochimaru, M., Tsuzuki, K., & Yokoi, T. (1999). Interobserver errors in anthrofometry. Journal of Human Ergology, 28(1-2), 15-24.
  26. Lu, J.-M., & Wang, M.-J. J. (2010). The evaluation of scanderived anthropometric measurements. IEEE Transactions on Instrumentation and Measurement, 59(8), 2048-2054.
  27. Mocini, E., Cammarota, C., Frigerio, F., Muzzioli, L., Piciocchi, C., Lacalaprice, D., & Pinto, A. (2023). Digital anthropometry: A Systematic review on precision, reliability and accuracy of most popular existing technologies. Nutrients, 15(2), 302. https://doi.org/10.3390/nu15020302
  28. Nadadur, G., & Parkinson, M. B. (2013). The role of anthropometry in designing for sustainability. Ergonomics, 56(3), 422-439. https://doi.org/10.1080/00140139.2012.718801
  29. Paquette, S., Brantley, J. D., Corner, B. D., Li, P., & Oliver, T. (2000, July). Automated extraction of anthropometric data from 3D images [Engineering, Computer Science]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Los Angeles, CA, United States. https://journals.sagepub.com/doi/10.1177/154193120004403811
  30. Park, H., & Koo, H. (2018). Emerging trends in 3D technology adopted in apparel design research and product development. Journal of the Korean Society of Clothing and Textiles, 42(1), 195-209. https://doi.org/10.5850/JKSCT.2018.42.1.195
  31. Park, J., & Nam, Y. J. (2016). Analysis of technical error of manual measurements. Journal of the Korean Society of Clothing and Textiles, 40(4), 641-649. http://dx.doi.org/10.5850/JKSCT.2016.40.4.641
  32. Robinette, K. M., & Daanen, H. A. (2006). Precision of the CAESAR scan-extracted measurements. Applied Ergonomics, 37(3), 259-265. https://doi.org/10.1016/j.apergo.2005.07.009
  33. Sims, R. E., Marshall, R., Gyi, D. E., Summerskill, S. J., & Case, K. (2012). Collection of anthropometry from older and physically impaired persons: Traditional methods versus TC2 3-D body scanner. International Journal of Industrial Ergonomics, 42(1), 65-72. https://doi.org/10.1016/j.ergon.2011.10.002
  34. Tiwari, M., & Anand, N. (2021). Validation and reliability of sizestream 3D scanner for human body measurement. In M. Abhijit, G. Deepti, & G. Sanjay (Eds.), Functional Textiles and Clothing 2020 (pp. 13-23). Springer Singapore. 
  35. Utermohle, C. J., & Zegura, S. L. (1982). Intra-and interobserver error in craniometry: A cautionary tale. American Journal of Physical Anthropology, 57(3), 303-310. https://doi.org/10.1002/ajpa.1330570307
  36. Weinberg, S. M., Naidoo, S., Govier, D. P., Martin, R. A., Kane, A. A., & Marazita, M. L. (2006). Anthropometric precision and accuracy of digital three-dimensional photogrammetry: Comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry. Journal of Craniofacial Surgery, 17(3), 477-483. http://dx.doi.org/10.1097/00001665-200605000-00015
  37. Weinberg, S. M., Scott, N. M., Neiswanger, K., Brandon, C. A., & Marazita, M. L. (2004). Digital three-dimensional photogrammetry: Evaluation of anthropometric precision and accuracy using a Genex 3D camera system. The Cleft Palate-Craniofacial Journal, 41(5), 507-518. https://doi.org/10.1597/03-066.1
  38. Whang, M. C., Yoo, J. W., & Kim, J. Y. (2002). A study to determine allowable measurement error during anthropometric measurement. Journal of the Ergonomics Society of Korea, 21(4), 107-115.
  39. Wong, J. Y., Oh, A. K., Ohta, E., Hunt, A. T., Rogers, G. F., Mulliken, J. B., & Deutsch, C. K. (2008). Validity and reliability of craniofacial anthropometric measurement of 3D digital photogrammetric images. The Cleft Palate-Craniofacial Journal, 45(3), 232-239. https://doi.org/10.1597/06-175