Polymerization of monomeric amyloid-${\beta}$ peptides ($A{\beta}$) into soluble oligomers and insoluble fibrils is one of the major pathways triggering the pathogenesis of Alzheimer's disease (AD). Using small molecules to prevent the polymerization of $A{\beta}$ peptides can, therefore, be an effective therapeutic strategy for AD. In this study, we investigated the effects of mono- and bi-flavonoids on $A{\beta}42$ toxicity and fibrillogenesis and found that the bi-flavonoid, taiwaniaflavone (TF) effectively and specifically inhibits $A{\beta}$ toxicity and fibrillogenesis. Compared to TF, the mono-flavonoid apigenin (AP) is less effective and less specific. Our data showed that differential effects of the mono- and bi-flavonoids on $A{\beta}$ fibrillogenesis correlate with their varying cytoprotective efficacies. We also found that other bi-flavonoids, namely 2',8"-biapigenin, amentoflavone, and sumaflavone, can also effectively inhibit $A{\beta}$ toxicity and fibrillogenesis, implying that the participation of two mono-flavonoids in a single bi-flavonoid molecule enhanced their activity. Bi-flavonoids, while strongly inhibited $A{\beta}$ fibrillogenesis, accumulated nontoxic $A{\beta}$ oligomeric structures, suggesting that these are off-pathway-oligomers. Moreover, TF abrogated the toxicity of preformed $A{\beta}$ oligomers and fibrils, indicating that TF and other bi-flavonoids may also reduce the toxicity of toxic $A{\beta}$ species. Altogether, our data clearly show that bi-flavonoids, possibly due to the possession of two $A{\beta}$ binders separated by an appropriate size linker, are likely to be promising therapeutics to suppress $A{\beta}$ toxicity.