• 제목/요약/키워드: Dirichlet heat kernel

검색결과 3건 처리시간 0.014초

HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION

  • Chen, Peng;Song, Renming;Xie, Longjie;Xie, Yingchao
    • 대한수학회지
    • /
    • 제56권1호
    • /
    • pp.91-111
    • /
    • 2019
  • We give a direct proof of the sharp two-sided estimates, recently established in [4, 9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1,1}$ open sets by using Duhamel's formula. We also obtain a gradient estimate for the Dirichlet heat kernel. Our assumption on the open set is slightly weaker in that we only require D to be $C^{1,{\theta}}$ for some ${\theta}{\in}({\alpha}/2,1]$.

THE BFK-GLUING FORMULA FOR ZETA-DETERMINANTS AND THE VALUE OF RELATIVE ZETA FUNCTIONS AT ZERO

  • Lee, Yoon-Weon
    • 대한수학회지
    • /
    • 제45권5호
    • /
    • pp.1255-1274
    • /
    • 2008
  • The purpose of this paper is to discuss the constant term appearing in the BFK-gluing formula for the zeta-determinants of Laplacians on a complete Riemannian manifold when the warped product metric is given on a collar neighborhood of a cutting compact hypersurface. If the dimension of a hypersurface is odd, generally this constant is known to be zero. In this paper we describe this constant by using the heat kernel asymptotics and compute it explicitly when the dimension of a hypersurface is 2 and 4. As a byproduct we obtain some results for the value of relative zeta functions at s=0.

AN INVERSE PROBLEM OF THE THREE-DIMENSIONAL WAVE EQUATION FOR A GENERAL ANNULAR VIBRATING MEMBRANE WITH PIECEWISE SMOOTH BOUNDARY CONDITIONS

  • Zayed, E.M.E.
    • Journal of applied mathematics & informatics
    • /
    • 제12권1_2호
    • /
    • pp.81-105
    • /
    • 2003
  • This paper deals with the very interesting problem about the influence of piecewise smooth boundary conditions on the distribution of the eigenvalues of the negative Laplacian in R$^3$. The asymptotic expansion of the trace of the wave operator (equation omitted) for small |t| and i=√-1, where (equation omitted) are the eigenvalues of the negative Laplacian (equation omitted) in the (x$^1$, x$^2$, x$^3$)-space, is studied for an annular vibrating membrane $\Omega$ in R$^3$together with its smooth inner boundary surface S$_1$and its smooth outer boundary surface S$_2$. In the present paper, a finite number of Dirichlet, Neumann and Robin boundary conditions on the piecewise smooth components (equation omitted)(i = 1,...,m) of S$_1$and on the piecewise smooth components (equation omitted)(i = m +1,...,n) of S$_2$such that S$_1$= (equation omitted) and S$_2$= (equation omitted) are considered. The basic problem is to extract information on the geometry of the annular vibrating membrane $\Omega$ from complete knowledge of its eigenvalues by analysing the asymptotic expansions of the spectral function (equation omitted) for small |t|.