DOI QR코드

DOI QR Code

Solvothermal Preparation of Nanocrystalline TiO2 Using Alcohol-water Mixed Solvent

알코올-물 혼합용액을 이용하는 Solvothermal 법에 의한 나노크기의 TiO2 제조

  • Lee, Sang Geun (Department of Industrial Chemistry, Pukyong National University) ;
  • Park, Seong Soo (Department of Industrial Chemistry, Pukyong National University) ;
  • Hong, Seong Soo (Department of Chemical Engineering, Pukyong National University) ;
  • Park, Jong Myung (Graduate Institute of Ferrous Technology, Pohang University of Science and Technology) ;
  • Lee, Seung Ho (Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Dae Sung (Composite Materials Center, Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Gun Dae (Department of Industrial Chemistry, Pukyong National University)
  • 이상근 (부경대학교 공업화학과) ;
  • 박성수 (부경대학교 공업화학과) ;
  • 홍성수 (부경대학교 화학공학과) ;
  • 박종명 (포항공과대학 철강대학원) ;
  • 이승호 (한국세라믹 기술원 복합재료센터) ;
  • 김대성 (한국세라믹 기술원 복합재료센터) ;
  • 이근대 (부경대학교 공업화학과)
  • Received : 2011.09.20
  • Accepted : 2011.10.23
  • Published : 2011.12.10

Abstract

In this study, a solvothermal reaction to prepare nanocrystalline titania was carried out using $TiCl_4$ and mixed solvents of alcohol and water. The effects of the type and the composition of alcohol on the crystal structure and agglomeration of final $TiO_2$ products were investigated. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). In the solvothermal reaction using the n-butanol solutions with different volume ratios of n-butanol/water (100/0, 75/25, 50/50, 25/75, 0/100), the extent of agglomeration of obtained rutile $TiO_2$ was found to change with the volume ratio of n-butanol/water, and the n-butanol/water ratio of 75/25 revealed the best result for the preparation of well-dispersed nanocrystalline $TiO_2$ powders. The crystal phase of $TiO_2$ prepared through the solvothermal reaction changed with the type of alcohol in solvent (alcohol/water = 75/25). $TiO_2$ products obtained with the aqueous solutions of methanol, ethanol and isopropanol have an anatase phase, while that with n-butanol has a rutile phase. The results showed that, in the solvothermal reaction using both $TiCl_4$ as a starting material and the alcohol-water mixed solvents without any other additive, the enhancement of dispersion and control of crystal structure of $TiO_2$ products can be feasible by simply varying the composition and type of alcohol in the mixed solvents.

본 연구에서는 $TiCl_4$ 출발물질 및 알코올과 물의 혼합용액을 이용한 solvothermal 법을 통하여 나노 크기의 $TiO_2$를 제조하였다. 이 때 혼합용액 중의 알코올의 종류 및 그 조성이 생성되는 $TiO_2$ 입자들의 결정상 혹은 응집상태에 미치는 영향에 대해 조사하였다. 생성물들의 물성은 X-선 회절법과 투과 및 주사전자 현미경을 이용하여 분석하였다. 1-부탄올/물의 부피 비가 각각 다른 혼합용매(1-부탄올/물; 100/0, 75/25, 50/50, 25/75, 0/100)를 이용한 solvothermal 법에 있어서 얻어진 루틸상의 $TiO_2$ 입자들의 응집상태는 1-부탄올/물의 비에 따라 변하였으며, 1-부탄올/물의 75/25 부피 비에서 잘 분산된 $TiO_2$ 나노 입자가 얻어졌다. 알코올과 물의 비를 75/25로 고정시킨 혼합 용매를 이용한 solvothermal 법에 있어서 알코올의 종류에 따라 생성되는 $TiO_2$ 입자들의 결정상이 변함을 확인하였다. 즉 메탄올, 에탄올 및 이소프로필 알코올의 혼합용액을 사용한 경우에는 아나타제상의 입자가 얻어지며 1-부탄올 혼합용액을 사용하면 루틸상의 $TiO_2$ 입자가 생성되었다. 이상의 결과들로부터 출발물질로는 $TiCl_4$를 그리고 반응용매로 알코올과 물의 혼합용액을 이용하며 더 이상의 첨가제를 사용하지 않는 solvothermal 법에 있어서는, 단순히 혼합용액의 조성 또는 알코올의 종류를 변화시킴으로써 생성되는 $TiO_2$ 입자들의 분산성 향상 및 결정상 조절이 가능한 것을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. X. Chen and S. S. Mao, Chem. Rev., 107, 2891 (2007). https://doi.org/10.1021/cr0500535
  2. M. Luo, K. Cheng, W. Weng, C. Song, P. Du, G. Shen, G. Xu, and G. Han, Mater. Lett., 62, 1965 (2008). https://doi.org/10.1016/j.matlet.2007.10.052
  3. S. Cassaignon, M. Koelsch, and J.-P. Jolivet, J. Mater. Sci., 42, 6689 (2007). https://doi.org/10.1007/s10853-007-1496-y
  4. M. Koelsch, S. Cassaignon, C. T. T. Minh, J.-F. Guillemoles, and J.-P. Jolivet, Thin Solid Films, 451-452, 86 (2004). https://doi.org/10.1016/j.tsf.2003.11.150
  5. N. N. Dinh, N. M. Quyen, D. N. Chung, M. Zikova, and V.-V. Truong, Sol. Energy Mater. Sol. Cells, 95, 618 (2011). https://doi.org/10.1016/j.solmat.2010.09.028
  6. M. D. Stamate, Appl. Surf. Sci., 218, 318 (2003). https://doi.org/10.1016/S0169-4332(03)00624-X
  7. M. Inaba, Y. Oba, F. Niina, Y. Murota, Y. Ogino, A. Tasaka, and K. Hirota, J. Power Sources, 189, 580 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.001
  8. C.-S. Chou, R.-Y. Yang, M.-H. Weng, and C.-H. Yeh, Powder Technol., 187, 181 (2008). https://doi.org/10.1016/j.powtec.2008.02.010
  9. H. Cheng, J. Ma, Z. Zhao, and L. Qi, Chem. Mater., 7, 663 (1995). https://doi.org/10.1021/cm00052a010
  10. R. K. Wahi, Y. Liu, J. C. Falkner, and V. L. Colvin, J. Collod. Interf. Sci., 302, 530 (2006). https://doi.org/10.1016/j.jcis.2006.07.003
  11. G. Wang, J. Mol. Catal. A., 274, 185 (2007). https://doi.org/10.1016/j.molcata.2007.05.009
  12. J. Yan, S. Feng, H. Lu, J. Wang, J. Zheng, J. Zhao, L. Li, and Z. Zhu, Mater. Sci. Eng., B, 172, 114 (2010). https://doi.org/10.1016/j.mseb.2010.04.032
  13. Y. Wu, H.-M. Liu, and B.-Q. Xu, Appl. Organomet. Chem., 21, 146 (2007). https://doi.org/10.1002/aoc.1184
  14. Y. Zheng, E. Shi, Z. Chen, W. Li, and X. Hu, J. Mater. Chem., 11, 1547 (2001). https://doi.org/10.1039/b009203g
  15. C. Wang, Z.-X. Deng, G. Zhang, S. Fan, and Y. Li, Powder Technol., 125, 39 (2002). https://doi.org/10.1016/S0032-5910(01)00523-X
  16. Y. Liu, C. Liu, and Z. Zhang, Chem. Eng. J., 138, 596 (2008). https://doi.org/10.1016/j.cej.2007.08.004
  17. M. Henry, J. P. Jolivert, and J. Livage, In Structure and Bonding, vol. 77, R. Reisfeld, and C. K. Jorgensen Eds., Springer-Verlag, Berlin (1992).
  18. D. Grosso, G. J. de A. A. Soler-Illia, F. Babonneau, C. Sanchez, P.-A. Albouy, A. Brunet-Bruneau, and A. R. Balkenende, Adv. Mater., 13, 1085 (2001). https://doi.org/10.1002/1521-4095(200107)13:14<1085::AID-ADMA1085>3.0.CO;2-Q
  19. H. Luo, C. Wang, and Y. Yan, Chem. Mater., 15, 3841 (2003). https://doi.org/10.1021/cm0302882
  20. J. Liu, W. Qin, S. Zuo, Y. Yu, and Z. Hao, J. Hazard. Mater., 163, 273 (2009). https://doi.org/10.1016/j.jhazmat.2008.06.086