DOI QR코드

DOI QR Code

The Antibiotic Resistant Gene Pollutant Controls using Chlorine or Ozone disinfection

염소 또는 오존을 이용한 항생제 내성 유전오염물질 제어

  • Received : 2011.10.12
  • Accepted : 2011.12.27
  • Published : 2011.12.31

Abstract

The aim of this study was to examine ozonation disinfection efficiency for Escherichia coli DH5alpha removal, containing the multi-resistance plasmid pB10 as well as chlorination disinfection efficiency. In addition, plasmid pB10 removal rates were estimated by ozonation and chlorination. The removal efficiency of pB10 via ozonation was about 2 to 4 times higher than chlorination. High removal efficiency of pB10 is likely due to OH radical produced during ozonation. These results suggest that integration of advanced oxidation process such as ozonation (or photocatalytic oxidation) with conventional disinfection such as chlorination may be needed for effective control of antibiotic resistant bacteria and genetic materials.

본 연구의 목적은 다제 항생제 내성특성을 가진 pB10을 함유한 Escherichia coli DH 5 alpha,(E.coli $DH5{\alpha}$)를 대상 미생물로 하여 염소와 오존의 살균효율을 비교하는 것이다. 또한 다제 내성플라스미드 pB10에 대한 염소와 오존에 의한 제거율을 조사하였다. 주입농도 대비 오존살균이 염소살균에 비해 약 1.2~1.4 배 정도 효율이 높게 나타났다. 또한 다제 내성플라스미드 pB10에 대한 제거 실험에서 오존에 의한 제거율이 염소보다 약 2~4배 높게 나타났다. 오존살균에 의한 높은 pB10 제거효율은 오존 살균시 발생하는 OH 라디칼에 의한 것으로 사료된다. 이러한 연구결과로부터 내성균 및 유전물질을 효과적으로 제어하기 위하여 기존 염소살균법에 오존 또는 광촉매산화와 같은 고급산화법을 연계처리에 대한 필요가 있을 것으로 판단된다.

Keywords

References

  1. 권오현. 2009. 4대강 살리기 사업의 추진 필요성과 해외 사례 벤치마킹, 한국 건설산업 연구원.
  2. 환경부 및 환경관리공단. 2009. 하수처리수 재이용 가이드북.
  3. Anderson, A.C., Reimers, R.S., Dekernion, P. 1982. A brief review of the current status of alternatives to chlorine disinfection of water. Public Health Briefs 72(11): 1290-1293.
  4. Auerbach, E.A., Seyfried, E.E., McMahon, K.D. 2007. Tetracycline resistance genes in activated sludge wastewater treatment plants. Water Research 41(5): 1143-1151. https://doi.org/10.1016/j.watres.2006.11.045
  5. Bader, H. and Hoigne, J.. 1981. Determination of ozone in water by the Indigo Method, Water Research 15: 449-456. https://doi.org/10.1016/0043-1354(81)90054-3
  6. Cho, M., Kim, J., Kim, J.Y., Yoon J., Kim J-H. 2010. Mechanisms of Escherichia coli inactivation by several disinfectants. Water Research 44(1): 3410-3418. https://doi.org/10.1016/j.watres.2010.03.017
  7. Driedger, A.M., Rennecker, J.L., Mariñas, B.J. 2000. Sequential inactivation of Cryptosporidium Parvum oocysts with ozone and free chlorine, Water Research 34(14): 3591-3597. https://doi.org/10.1016/S0043-1354(00)00097-X
  8. Gehr, R., Wagner, M., Veerasubramanian, P., Payment, P. 2003. Disinfection efficiency of peracetic acid, UV and ozone after enhanced primary treatment of municipal wastewater. Water Research 37: 4573-4586. https://doi.org/10.1016/S0043-1354(03)00394-4
  9. Hunt, N.K., Marinas, B.J. 1997. Kinetics of Escherichia Coli inactivation with ozone. Water Research 31(6): 1355-1362. https://doi.org/10.1016/S0043-1354(96)00394-6
  10. Iwane, T., Urase, T., Yamamoto, K. 2001. Possible impact of treated wastewater discharge on incidence of antibiotic resistant bacteria in river water. Water Sci. Technol., 43(2): 91-99.
  11. Kim, S., Park, H., Chandran, K. 2010. Propensity of activated sludge to amplify or attenuate tetracycline resistance genes and tetracycline resistant bacteria: A mathematical modeling approach. Chemosphere, 78(9): 1071-1077. https://doi.org/10.1016/j.chemosphere.2009.12.068
  12. Macauley, J.J., Qiang, Z.., Craig D. Adams, C.D., Surampalli, R., Mormile M.R. 2006. Disinfection of swine wastewater using chlorine, ultraviolet light and ozone. Water Reseach, 40: 2017-2026. https://doi.org/10.1016/j.watres.2006.03.021
  13. Mezrioui, N., and Baleux, B. 1994. Resistance patterns of E. coli strains isolated from domestic sewage before and after treatment in both aerobic lagoon and activated sludge. Water Research 28(11):2399-2406. https://doi.org/10.1016/0043-1354(94)90056-6
  14. Richardson, S.D., Plewa, M.J., Wagner, E.D., Schoeny, R., DeMarini, D.M. 2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection byproducts in drinking water: a review and roadmap for research. Mutation Research - Reviews in Mutation Research 636(1-3): 178-242. https://doi.org/10.1016/j.mrrev.2007.09.001
  15. Rosal, R., Rodriguez, A., Perdigon-Melon J.A., Petre, A., Garcia-Calvoa, E., Gomez, M.J., Aguera, A., Fernandez-Alba, A.R., 2010. Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Research 44: 578-588. https://doi.org/10.1016/j.watres.2009.07.004
  16. Schluter, A., Heuer, H., Szczepanowski, R., Forney, L. J., Thomas, C.M., Puhler, A., Top, E.M. 2003. The 64 508 bp IncP-1b antibiotic multiresistance plasmid pB10 isolated from a wastewater treatment plant provides evidence for recombination between members of different branches of the IncP-1b group. Microbiology 149:3139-3153. https://doi.org/10.1099/mic.0.26570-0
  17. von Gunten, U., 2003. Ozonation of drinkingwater: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 37: 1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X
  18. WHO. 2008. Guidelines for drinking water quality.
  19. Zhao, Y.-Y., Boyd, J.M., Woodbeck, M., Andrews, R.C., Qin, F., Hrudey, S.E., Li, X.-F. 2008. Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters. Environmental Science & Technology 42 (13): 4857-4862. https://doi.org/10.1021/es7031423