DOI QR코드

DOI QR Code

하변토양의 미생물체외효소활성에 미치는 칩입성 식물의 영향

Influences of Invasive Plant on Extracellular Enzyme Activities in Riparian Ecosystems

  • 박순영 (연세대학교 토목환경공학과) ;
  • 김재근 (서울대학교 생물교육학과) ;
  • 강호정 (연세대학교 사회환경시스템공학부)
  • 투고 : 2011.12.05
  • 심사 : 2012.01.30
  • 발행 : 2012.02.28

초록

하변에 침입하는 외래종 식물은 하변 토양의 생태구조 및 기능에 영향을 미칠 수 있기 때문에 관심의 대상이다. 이에 본 연구에서는 1년간 국내 하변 총 네 지점에서 유기물질 분해율을 대표할 수 있는 미생물 체외효소 활성(${\beta}$-glucosidase, N-acetylglucosaminidase, phosphatase, arylsulfatase)을 외래종 유무에 따라 측정하였다. 하변 침입종인 환삼덩굴과 가시박 생장구 및 외래종 제거구의 토양을 분석한 결과 일부 침입성 덩굴식물 실험구에서 효소활성이 높았으나 계절 및 효소별로 그 특성이 달라 어떤 경향을 밝혀낼 수는 없었다. 허나, 교란이 발생한 하변 생태계에서는 침입성 덩굴 식물이 토양의 유기물질 분해를 가속화시키는 것으로 판단된다.

We have measured soil enzyme activities, which represent the rates of organic matter decomposition, in four riparian ecosystems in Korea. ${\beta}$-glucosidase, N-acetylglucosaminidase, phosphatase and arylsulfatase activities were determined in five occasions over a year period in soils of control plots and plots with invasive plants, namely Sicyos angulatus and Humulus japonicus. Significantly higher enzyme activities were found in soils with invasive plant in barren land, but the difference was season and enzyme-specific. Although it was not universal changes, the invasive plants appeared to accelerate organic matter decomposition in some disturbed riparian ecosystems.

키워드

참고문헌

  1. 김영주. 2009. 한강 지류에서 수변의 토지이용 특성에 따른 탈질능 평가 및 조절인자 규명. 석사학위 논문. 연세대학교. pp. 39.
  2. 박순영. 2006. 침입성 덩굴 식물이 하변 토양의 미생물 활성에 미치는 영향. 석사학위 논문. 이화여자대학교. pp. 35-37, 41-43.
  3. 송근예. 2003. 습지의 형태 및 수리조건에 따른 영양염류 제거와 미생물 체외효소 활성도에 관한 연구. 석사학위 논문. 이화여자대학교. pp. 23.
  4. 이지은. 2010. 하천 복원에 따른 생태환경성 평가기법 개발, 석사학위 논문. 연세대학교. pp. 79-83.
  5. 정수현 2003. 환경 조건 변화에 따른 연안 퇴적물의 미생물 체외 효소 활성도 변화에 관한 연구, 석사학위 논문. 이화여자대학교. pp. 5.
  6. 환경부. 2006. 생태환경 이용 및 관리기술: 하천변 침입성 덩굴식물이 생물다양성 및 생태적 기능에 미치는 생태적 위해성 평가 및 관리방안 연구보고서. pp. 57-71.
  7. Alfred E. H, O'Sullivan J. N. 2001. Leaf litter decomposition of Piper aduncum, Gliricidia sepium and Imperata cylindrica in the humid lowlands of Papua New Guinea. Plant and Soil 230: 115-124. https://doi.org/10.1023/A:1004868502539
  8. Aguiar M. R, Paruelo J. M, Sala O. E, Laurenroth W. K. 1996. Ecosystem responses to changes in plant functional type composition: an example from the Patagonian steppe. Journal of Vegetation Science 7; :381-90. https://doi.org/10.2307/3236281
  9. Asner G. P. and Beatty S. W. 1996. Effects of an African grass invasion on Hawaiian Shrubland nitrogen biogeochemistry. Plant Soil. 186; 205-211. https://doi.org/10.1007/BF02415515
  10. Beaumont L. J, Gallagher R. V, Downey P. O, Thuiller W, Leishman M. R, Hughes L. 2009. Modelling the impact of Hieracium spp. on protected areas in Australia under future climates. Ecography 32: 757-764. https://doi.org/10.1111/j.1600-0587.2009.05705.x
  11. Blank, R. R. 2002 Amidohydrolase activity, soil N status, and the invasive crucifer Lepidium latifolium. Plant and Soil 239: 155-163. https://doi.org/10.1023/A:1014943304721
  12. Bonnett S. A. F, Ostle N, Freeman C. 2006. Seasonal variations in decomposition processes in a valley-bottom riparian peatland. Science of the Total Environment 370: 561-573. https://doi.org/10.1016/j.scitotenv.2006.08.032
  13. Boothroyd, I. K. G. and Langer, E. R. 1999. Forest harvesting and riparian management guidelines: a review. NIWA Technical Report 56. pp. 5-45.
  14. Christian J. M. and Wilson S. D. 1999. Longterm ecosystem impacts of an introduced grass in the northern great plains. Ecology 80: 2397-2407. https://doi.org/10.1890/0012-9658(1999)080[2397:LTEIOA]2.0.CO;2
  15. Davis M. 1997. Comparative nutrient responses by Pinus radiata, Trifolium repens, Dactylis glomerata, and Hieracium pilosella on a Mackenzie Basin outwash plain soil. New Zealand Journal of Agricultural Research 40: 9-16. https://doi.org/10.1080/00288233.1997.9513225
  16. Emery S. L. and Perry J. A. 1996. Decomposition Rates and Phosphorus Concentrations of Purple Loosestrife (Lythrum salicaria) and Cattail (Typha spp.) in fourteen Minnesota Wetlands. Hydrobiologia 323: 129-138. https://doi.org/10.1007/BF00017590
  17. Freeman C, Kosda G, Ostle N. J, Jones S. E. Lock M. A. 1995. The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant and soil 175: 147-152. https://doi.org/10.1007/BF02413020
  18. Grout, J. A, Levings C. D, Richardson J. S. 1997. Decomposition rates of purple loosestrife (Lythrum salicaria) and Lyngbyei's sedge (Carex lyngbyei) in the Fraser River estuary. Estuaries 20: 96-102. https://doi.org/10.2307/1352723
  19. Haycock, N. E. and Pinay. G. 1993. Groundwater nitrate dynamics in grass and poplar vegetated riparian buffer strips during the winter. Journal of Environmental Quality 22: 273-278.
  20. Kim S and Kim JG. 2009. Humulus japonicus Accelerates the Decomposition of Miscanthus sacchariflorus and Phragmites australis in a Floodplain. Journal of Plant Biology 52: 466-474. https://doi.org/10.1007/s12374-009-9060-8
  21. Kourtev P. S, Ehrenfeld J. G, Huang WZ. 2002. Enzyme activities during litter decomposition of two exotic and two native plant species in hardwood forests of New Jersey. Soil Biology & Biochemistry 34: 1207-1218. https://doi.org/10.1016/S0038-0717(02)00057-3
  22. Lohrer A. M, Thrush S. F, Gibbs M. M. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092-1095. https://doi.org/10.1038/nature03042
  23. Malanson, G. P. 1993. Riparian Landscapes. Cambridge, UK: Cambridge University Press. pp. 12-38.
  24. Martin, T. L., Kaushik, N. K., Trevores, J. T. and Whiteley, H. R. 1999. Review: Denitrification in temperate climate riparian zones. Water, Air, and Soil Pollution 111: 171-186. https://doi.org/10.1023/A:1005015400607
  25. Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 9: 89-103.
  26. Mitsch W. J. and Gosselink J. G., 2000. Wetlands (3rd edition). John Wiley and Sons Inc.
  27. Otto S, Groffman PM, Findlay SEG, Arreola AE. 1999. Invasive plant species and microbial processes in a tidal freshwater marsh. Journal of Environment Quality 28: 252-257.
  28. Page, A. L., Miller, R. H., Keeney, D. R. 1982. Methods of soil analysis part 2: chemical and microbiological properties. American Society of Agronomy Madison, Soil Science Society of America.
  29. Park, S. and Kang, H. 2010. Impact of invasive plant and environmental conditions on denitrification potential in urban riparian ecosystems. Chemistry and Ecology 26: 353-360. https://doi.org/10.1080/02757540.2010.504671
  30. Schilling, E. and Lockaby. B. G. 2006. Relationships between productivity and nutrient circulation within two contrasting southeastern U.S. Floodplain forests. Wetlands 26: 81-192.
  31. Schueler, T. 1995. The architecture of urban stream buffers. Watershed Protection Techniques. 1: 155-163.
  32. Seoul Development Institute. 2001. Close Investigation of Natural Ecosystems in Seoul. Seoul City. pp. 283-316.
  33. Seoul Development Institute. 2004. Ecological Monitoring and Management Plan in Bam Island. Seoul City. pp. 243.
  34. Schlesinger W. H, 1997. Biogeochemistry : An Analysis of Global Change (2nd Edition). Academic Press. pp. 383-398.
  35. Stutter M, Langan S. J, Lumsdon A. G. 2009. Vegetated Buffer Strips Can Lead to Increased Release of Phosphorus to Waters: A Biogeochemical Assessment of the Mechanisms. Environmental Science Technology 43: 1858-1863. https://doi.org/10.1021/es8030193
  36. Tate III R. L. 1987. Soil organic matter-biological and ecological effects. John Wiley & Sons.
  37. Templer P., Findlay S. and Wigand C. 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem. Wetlands 18; 70-78. https://doi.org/10.1007/BF03161444
  38. USDA Plants Database https://plants.usda.gov/java/
  39. Vinton, M. A. and Burke I. C. 1995. Interactions between individual plant species and soil nutrient status in short grass steppe. Ecology 76: 1116-1133. https://doi.org/10.2307/1940920
  40. Vivrette N. J. and Muller C. H. 1977. Mechanism of invasion and dominance of coastal grassland by Mesembryanthemum crystallinum. Ecological Application 47: 301-318.
  41. Wilczek S, Fischer H, Pusch, M. T. 2005. Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river. Microbial Ecology 50: 253-267. https://doi.org/10.1007/s00248-004-0119-2
  42. Windham L. 2001. Comparison of biomass production and decomposition between Phragmites australis (Common Reed) and Spartina patens (Salt Hay Grass) in Brackish Tidal Marshes of New Jersey, USA. Wetlands 21: 179-188. https://doi.org/10.1672/0277-5212(2001)021[0179:COBPAD]2.0.CO;2
  43. Witkowski E. T. F. 1991. Effects of invasive alien acacias on nutrient cycling in the coastal lowlands of the Cape fynbos. Journal of Applied Ecology 28: 1-15. https://doi.org/10.2307/2404109