DOI QR코드

DOI QR Code

Numerical Modeling of Flow Characteristics within the Hyporheic Zones in a Pool-riffle Sequences

여울-소 구조에서 지표수-지하수 혼합대의 흐름 특성 분석에 관한 수치모의 연구

  • 이두한 (한국건설기술연구원 하천해안연구실) ;
  • 김영주 (한국건설기술연구원 하천해안연구실) ;
  • 이삼희 (한국건설기술연구원 하천해안연구실)
  • Received : 2011.11.18
  • Accepted : 2012.02.15
  • Published : 2012.02.28

Abstract

Hyporheic zone is a region beneath and alongside a stream, river, or lake bed, where there is mixing of shallow groundwater and surfacewater. Hyporheic exchange controls a variety of physical, biogeochemical and thermal processes, and provides unique ecotones in a aquatic ecosystem. Field and experimental observations, and modeling studies indicate that hyporheic exchange is mainly in response to pressure gradients driven by the geomorphological features of stream beds. In the reach scale of a stream, pool-riffle structures dominate the exchange patterns. Flow over a pool-riffle sequence develops recirculation zones and stagnation points, and this flow structures make irregular pressure gradient which is driving force of the hyporheic exchange. In this study, 3 D hydro-dynamic model solves the Reynolds-averaged Navier-Stokes equations for the surface water and Darcy's Law and the continuity equation for ground water. The two sets of equations are coupled via the pressure distribution along the interface. Simulation results show that recirculation zones and stagnation points in the pool-riffle structures dominantly control the upwelling and downwelling patterns. With decrease of recirculation zones, length of donwelling zone formed in front of riffles is reduced and position of maximum downwelling point moves downward. The numerical simulation could successfully predict the behavior of hyporheic exchange and contribute the field study, river management and restoration.

지표수-지하수 혼합대는 하천 및 호소 등에서 지표수와 지하수가 교환되는 공간이다. 지표수-지하수 혼합은 하상의 토층으로 확장되어 다양한 물리적, 생지화화적, 열역학적 교환을 발생시키며 수생태계 내 고유한 생태적 전이대를 형성하는데 주요한 역할을 한다. 과거 실험 및 수치모의 연구에 의하면 혼합대에서 발생하는 물질교환은 하천의 지형적인 특징으로 발생하는 압력분포에 의해 지배된다. 특히 하천의 구간 규모에서 여울-소 구조는 혼합대의 특성을 지배하는 주요 인자로 알려져 있다. 여울-소 연속 구조는 지표수에서 재순환영역과 정체점을 형성하며 이 독특한 흐름 구조에 의해 혼합대의 흐름특성이 영향을 받는다. 본 연구에서는 3차원 동수역학 모형을 이용하여 Reynolds-averaged Navier-Stokes 방정식과 Darcy 방정식을 동시에 해석하여 연속된 여울-소 구조에서 발생하는 지표수의 흐름구조가 혼합대의 흐름에 미치는 영향을 분석하였다. 모의 결과, 여울-소 구조에서 지표수의 재순환영역 및 정체점은 상승류와 하강류 형성과 직접적 연관을 가지며, 재순환영역의 크기가 감소하면 여울 전면부 하강류 형성 구간의 길이가 감소하고 최대 하강류 발생 지점이 하부로 이동하는 특성을 파악하였다. 이와 같은 본 연구의 결과는 혼합대의 현장관측, 하천 관리 및 복원 등의 연구에 활용하여 친환경 하천 조성에 기여할 수 있을 것으로 판단된다.

Keywords

References

  1. 김구영, 전철민, 김태희, 오준호, 정재훈, 박승기, 2006, 열추적자를 이용한 지하수-하천수 혼합대 연구, 대한자원환경지질학회지, 39(5), 525-535
  2. 김영주, 강호정, 2009, 자연 하천의 생태학적 중요 지점으로서 지표수-지하수 혼합대의 생지화학적 기작. 한국습지학회지, 11(1), 123-130.
  3. 김희정, 현윤정, 이강근, 2009, 지하수 종속 생태 환경에서 수문-생태학적 특성 조사 및 분석. 한국습지학회지, 11(3), 1-8.
  4. 김희정, 이진용, 이성순, 현윤정, 이강근, 2011, 지하수-지표수 혼합구간의 수직 온도 분포 특성 분석, 한국습지학회지, 13(2), 265-273
  5. Anderson JK, Wondzell SM, Gooseff MN, and Haggerty R. 2005. Patterns in Stream Longitudinal Profiles and Implications for Hyporheic Exchange Flow at the H.J. Andrews Experimental Forest, Hydrol. Proc., 19(15), 2931-2949.
  6. Buffington JM and Tonina D. 2009. Hyporheic Exchange in Mountain Rivers II : Effects of Channel Morphology on Mechanics, Scales, and Rates of Exchange, Geogr. Compass, 3, 1-25. https://doi.org/10.1111/j.1751-9020.2008.00186.x
  7. Baxter CV, Hauer FR. 2000. Geomorphology, hyporheic exchange, and selection of spawning habitat by bull trout (Salvelinus confluentus), Canadian Journal of Fisheries and Aquatic Sciences, 57(7), 1470-1481. https://doi.org/10.1139/f00-056
  8. Boulton AJ, Findlay S, Marmonier P, Stanley EH, Valett HM. 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29, 59-81. https://doi.org/10.1146/annurev.ecolsys.29.1.59
  9. Brunke M and Gonser T. 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology 37, 1-33. https://doi.org/10.1046/j.1365-2427.1997.00143.x
  10. Cardenas MB and Wilson JL. 2006. The influence of ambient groundwater discharge on hyporheic zones induced by current-bedform interactions, J. Hydrol., 331, 103-109. https://doi.org/10.1016/j.jhydrol.2006.05.012
  11. Cardenas MB and Wilson JL. 2007a. Dunes, turbulent eddies, and interfacial exchange with permeable sediments, Water Resour. Res., 43, W08412.
  12. Cardenas MB and Wilson JL. 2007b, Hydrodynamics of coupled flow above and below a sediment-water interface with triangular bedforms, Adv. Water, 30, doi: 10.1016/j.advwatres.2006.06.009.
  13. Elliott AH. 1990. Transfer of solutes into and out of streambeds. Ph.D. thesis, Rep KH-R-52, WM Keck Lab of Hydraulic and Water Resources, Calif. Inst. of Technol., Pasadena.
  14. Elliott AH and Brooks NH. 1997a. Transfer of nonsorbing solutes to a streambed with bed forms: Laboratory experiments, Water Resour. Res., 33, 1137-1151.
  15. Elliott AH and Brooks NH. 1997b. Transfer of nonsorbing solutes to a streambed with bed forms: Theory, Water Resour. Res., 33, 123-136. https://doi.org/10.1029/96WR02784
  16. Endreny TL, Lautz L, and Siegel DI. 2011. Hyporheic flow path response to hydraulic umps at river steps: Flume and hydrodynamic models, Water Resour. Res., 47, W02517, doi:10.1029/2009WR008631.
  17. Evans EC and Petts GE. 1997. Hyporheic temperature patterns within riffles., Hydrological Sciences Journal., 42(2), 199-213. https://doi.org/10.1080/02626669709492020
  18. Franken RJM, Storey RG, and Williams DD. 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream., Hydrobiologia, 444, 183-195. https://doi.org/10.1023/A:1017598005228
  19. Greig SM, Sear DA, Carling PA. 2007. A review of factors influencing the availability of dissolved oxygen to incubating salmonid embryos, Hydrological Processes, 21, 323-334. https://doi.org/10.1002/hyp.6188
  20. Hester ET, and Doyle MW. 2008. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resources Research, 44, 17.
  21. Hirt CW and Nichols BD. 1981. Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39(1), 201-225. https://doi.org/10.1016/0021-9991(81)90145-5
  22. Huettel M and Webster IT. 2001. Porewater flow in permeable sediments, in: B. P. Boudreau, B. B. Jorgensen (Eds.), The Benthic Boundary Layer: Transport Processes and Biogeochemistry, Oxford University Press, pp. 144-179.
  23. Orghidan T. 1959. Ein neuer lebensraum des unterirdischen wassers: Der hyporheische biotop. Archiv fur Hydrobiologie, 55, 392-414.
  24. Rodriguez JF, Garcia MH, Bombardelli FA, Guzman JM, Rhoads BL, and Herricks EE. 2000. Naturalization of urban streams using in-channel structures, Joint Conference on Water Resources Engineering and Water Resources Planning and Management, ASCE, July 30-August 2, 2000, Minneapolis, Minnesota.
  25. Salehin MA, Packman I, and Paradis M. 2004. Hyporheic exchange with heterogeneous streambeds: Laboratory experiments and modeling, Water Resour. Res., 40, W11504, doi:10.1029/2003WR002567.
  26. Savant SA, Reible DD, and Thibodeaux LJ. 1987. Convective transport within stable river sediments, Water Resour. Res., 23, 1763-1768. https://doi.org/10.1029/WR023i009p01763
  27. Schwoerbel J. 1961. Uber die Lebensbedingungen und die Besiedlung des hyporheischen Lebensraumes. Arch. Hydrobiol. Suppl. 25, 182-214.
  28. Tonina D and Buffington JM. 2009. A threedimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat., Canadian Journal of Fisheries and Aquatic Sciences, 66, 2157-2173. https://doi.org/10.1139/F09-146
  29. Yakhot V and Orszag SA. 1986. Renormalization group analysis of turbulence 1. Basic theory, J. Sci. Comput., 1(1), 1-51. https://doi.org/10.1007/BF01061451