Apoptotic Effects of Curcumin on the Epstein-Barr Virus-Transformed Human B Lymphoma Cells Activated by PWM

Curcumin이 PWM에 의해 활성화된 Epstein-Barr 바이러스 변형 사람 B 림프종 세포의 사멸에 미치는 효과

  • Ryu, Sang-Chae (Department of Third Medicine, Professional Graduate School of Oriental Medicine, Wonkwang University) ;
  • Lee, Jang-Suk (Department of Preventive Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Chong, Myong-Soo (Department of Preventive Medicine, College of Oriental Medicine, Wonkwang University) ;
  • Lee, Ki-Nam (Department of Preventive Medicine, College of Oriental Medicine, Wonkwang University)
  • 유상채 (원광대학교 한의학전문대학원 제3의학과) ;
  • 이장석 (원광대학교 한의과대학 예방의학교실) ;
  • 정명수 (원광대학교 한의과대학 예방의학교실) ;
  • 이기남 (원광대학교 한의과대학 예방의학교실)
  • Received : 2012.03.20
  • Accepted : 2012.04.26
  • Published : 2012.06.25

Abstract

The results of this study intended to clarify the apoptotic effects of curcumin on Epstein-Barr virus transformed human B lymphoma (EBV-B) cells are summarized as follows: It was found that curcumin induced endoplasmic reticulum(ER) stress as well as apoptotic cell death in EBV-B cells, although the magnitude of action was insignificant. When EBV-B cells activated by pokeweed mitogen (PWM) were treated with the same concentrations of curcumin, it was found that higher ER stress (GRP78, P-PERK, XBP-1, ATF6, and CHOP expressed) increased unfold protein response (UPR) and thus, apoptosis attributed to ER stress, compared to non-activated EBV-B cells In conclusion, it is expected that curcumin will play an important role for leukemia treatment.

Keywords

References

  1. 中國中草藥情報. 植物有效成分手冊. 北京, pp 281-282, 1986.
  2. 辛民敎. 精華 臨床本草. 圖書出版 永林社, 서울, pp 479-481, 491-492, 531-532, 2010.
  3. 中華本草 編纂委. 中華本草. 上海人民出版社, 上海, 8: 642, 1999.
  4. 蔡光先. 湖南藥物志. 湖南科技出版社, 湖南, pp 2578-2581, 3352-3354, 3475-3476, 2004.
  5. 鄭普燮, 辛民敎. 圖解鄕藥(生藥)大事典(植物篇). 圖書出版 永林社, 서울, pp 256-259, 1990.
  6. Jain, S.K., DeFilipps, R.A. Medicinal Plants of India. Algonac, MI, Reference, p 120, 1991.
  7. Schroder, M., Kaufman, R.J. ER stress and the unfolded protein response, Mutat. Res. 569: 29-63, 2005. https://doi.org/10.1016/j.mrfmmm.2004.06.056
  8. Zhang, K., Kaufman, R.J. The unfolded protein response: a stress signaling pathway critical for health and disease, Neurology 66: S102-109, 2006. https://doi.org/10.1212/01.wnl.0000192306.98198.ec
  9. Schroder, M., Kaufman, R.J. The mammalian unfolded protein response, Annu. Rev. Biochem. 74: 739-789, 2005. https://doi.org/10.1146/annurev.biochem.73.011303.074134
  10. Faitova, J., Krekac, D., Hrstka, R., Vojtesek, B. Endoplasmic reticulum stress and apoptosis, Cell. Mol. Biol. Lett. 11: 488-505, 2006. https://doi.org/10.2478/s11658-006-0040-4
  11. Ibba, M., Soll, D. Quality control mechanisms during translation, Science 286: 1893-1897, 1999. https://doi.org/10.1126/science.286.5446.1893
  12. Wickner, S., Maurizi, M.R., Gottesman, S. Posttranslational quality control: folding, refolding, and degrading proteins, Science 286: 1888-1893, 1999. https://doi.org/10.1126/science.286.5446.1888
  13. Ellgaard, L., Molinari, M., Helenius, A. Setting the standards: quality control in the secretory pathway, Science 286: 1882-1888, 1999. https://doi.org/10.1126/science.286.5446.1882
  14. Brewer, J.W., Diehl, J.A. PERK mediates cell-cycle exit during the mammalian unfolded protein response, Proc. Natl. Acad. Sci. 97: 12625-12630, 2000. https://doi.org/10.1073/pnas.220247197
  15. Brewer, J.W., Hendershot, L.M., Sherr, C.J., Diehl, J.A. Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression, Proc. Natl. Acad. Sci. 96: 8505-8510, 1999. https://doi.org/10.1073/pnas.96.15.8505
  16. Mc Cullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y., Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state, Mol. Cell. Biol. 21: 1249-1259, 2001. https://doi.org/10.1128/MCB.21.4.1249-1259.2001
  17. Harding, H.P., Zeng, H., Zhang, Y., Jungries, R., Chung, P., Plesken, H., Sabatini, D.D., Ron, D. Diabetes mellitus and exocrine pancreatic dysfunction in perk-/- mice reveals a role for translational control in secretory cell survival, Mol. Cell. 7: 1153-1163, 2001. https://doi.org/10.1016/S1097-2765(01)00264-7
  18. Ammon, H.P., Wahl, M.A. Pharmacology of Curcuma longa, Planta Med. 57(1):1-7, 1991. https://doi.org/10.1055/s-2006-960004
  19. Leung, A. Encyclopedia of Common Natural Ingredients Used in Food, Drugs, and Cosmetics, New York, Wiley, pp 313-314, 1980.
  20. Karmakar, S., Banik, N.L., Patel, S.J., Ray, S.K. Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells, Neurosci. Lett. 407: 53-58, 2006. https://doi.org/10.1016/j.neulet.2006.08.013
  21. Uddin, S., Hussain, A.R., Manogaran, P.S., Al-Hussein, K., Platanias, L.C., Gutierrez, M.I., Bhatia, K.G. Curcumin suppresses growth and induces apoptosis in primary effusion lymphoma, Oncogene 24(47):7022-7030, 2005. https://doi.org/10.1038/sj.onc.1208864
  22. Sen, S., Sharma, H., Singh, N. Curcumin enhances Vinorelbine mediated apoptosis in NSCLC cells by the mitochondrial pathway, Biochem. Biophys. Res. Commun. 331(4):1245-1252, 2005. https://doi.org/10.1016/j.bbrc.2005.04.044
  23. Ranjan, D., Johnston, T.D., Wu, G., Elliott, L., Bondada, S., Nagabhushan, M. Curcumin blocks cyclosporine A-resistant CD28 costimulatory pathway of human T-cell proliferation, J. Surg. Res. 77(2):174-178, 1998. https://doi.org/10.1006/jsre.1998.5374
  24. Chen, C., Jeon, H., Johnston, T.D., Gedaly, R., McHugh, P.P., Ranjan, D. Cyclosporin A-Induced Lipid and Protein Oxidation in Human B-Cells and in Epstein-Barr Virus-Infected B-Cells is Prevented by Antioxidants, J. Invest. Surg. 21: 201-208, 2008. https://doi.org/10.1080/08941930802262223
  25. Pae, H.O., Jeong, S.O., Jeong, G.S., Kim, K.M., Kim, H.S., Kim, S.A., Kim, Y.C., Kang, S.D., Kim, B.N., Chung, H.T. Curcumin induces pro-apoptotic endoplasmic reticulum stress in human leukemia HL-60 cells, Biochem. Biophys. Res. Commun. 353(4):1040-1045, 2007. https://doi.org/10.1016/j.bbrc.2006.12.133
  26. Kim, K.M., Pae, H.O., Zheng, M., Park, R., Kim, Y.M., Chung, H.T. Carbon monoxide induces heme oxygenase-1 via activation of protein kinase R-like endoplasmic reticulum kinase and inhibits endothelial cell apoptosis triggered by endoplasmic reticulum stress, Circulation Research 101: 919-927, 2007. https://doi.org/10.1161/CIRCRESAHA.107.154781
  27. Demidenko, Z.N., Kalurupalle, S., Hanko, C., Lim, C.U., Broude, E., Blagosklonny, M.V. Mechanism of G1-like arrest by low concentrations of paclitaxel: next cell cycle p53-dependent arrest with sub G1 DNA content mediated by prolonged mitosis. Oncogene 27: 4402-4410, 2008. https://doi.org/10.1038/onc.2008.82
  28. Nur-E-Kamal, A., Gross, S.R., Pan, Z., Balklava, Z., Ma, J., Liu, L.F. Nuclear translocation of cytochrome c during apoptosis, J. Biol. Chem. 279: 24911-24914, 2004. https://doi.org/10.1074/jbc.C400051200
  29. Chao, D.T., Korsemeyer, S.J. Bcl-2 family: regulators of cell death, Annu. Rev. Immunol. 16: 395-419, 1998. https://doi.org/10.1146/annurev.immunol.16.1.395
  30. Droin, N.M., Green, D.R. Role of Bcl-2 family members in immunity and disease, Biochim. Biophys. Acta. 1644: 179-188, 2004. https://doi.org/10.1016/j.bbamcr.2003.10.011
  31. Mori, K. Tripartitie management of unfolded proteins in the endoplasmic reticulum, Cell 101: 451-454, 2000. https://doi.org/10.1016/S0092-8674(00)80855-7