Study on Electrical Characteristic Improvement of PVP-IZO TFT Prepared by Solution Process Using UV-O3 Treatment

용액공정으로 제작한 PVP-IZO TFT의 UV-O3 처리를 통한 전기적 특성 향상 연구

  • Kim, Yu Jung (Dept. of Electronic Radio Information Communication Engineering, Chungnam National Univ.) ;
  • Jeong, Jun Kyo (Dept. of Electronic Radio Information Communication Engineering, Chungnam National Univ.) ;
  • Park, Jung Hyun (Dept. of Electronic Radio Information Communication Engineering, Chungnam National Univ.) ;
  • Jung, Byung Jun (Dept. of Electronic Radio Information Communication Engineering, Chungnam National Univ.) ;
  • Lee, Ga Won (Dept. of Electronics Engineering, Chungnam National Univ.)
  • 김유정 (충남대학교 전자전파정보통신공학과) ;
  • 정준교 (충남대학교 전자전파정보통신공학과) ;
  • 박정현 (충남대학교 전자전파정보통신공학과) ;
  • 정병준 (충남대학교 전자전파정보통신공학과) ;
  • 이가원 (충남대학교 전자공학과)
  • Received : 2017.06.05
  • Accepted : 2017.06.19
  • Published : 2017.06.30

Abstract

In this paper, solution based Indium Zinc Oxide thin film transistors (IZO TFTs) were fabricated with PVP gate dielectric. To enhance the electrical properties, UV-O3 treatment is proposed on solution based IZO TFTs. The gate leakage current and interface trap density is compatible with conventional ZnO-based TFT with inorganic gate insulator. Especially, the UV-treated device shows improved electrical characteristics compared to the untreated device. These results can be explained by X-ray photoelectron spectroscopy (XPS) analysis, which shows that the oxygen vacancy of UV-O3 treatment is higher than that of no treatment.

Keywords

References

  1. Liu, Z., Oh, J. H., Roberts, M. E., Wei, P., Paul, B. C., Okajima, M., Nishi, Y. and Bao, Z., "Solution-processed flexible organic transistors showing very-low subthreshold slope with a bilayer polymeric dielectric on plastic," Appl. Phys. Lett., vol. 94, pp. 203301, 2009. https://doi.org/10.1063/1.3133902
  2. Park, J.H., Jeong, J. K., Kim,Y. J., Jung. B. J. and Lee, G. W. "Electrical Characteristic Analysis of IGZO TFT with Poly (4-vinylphenol) Gate Insulator according to Annealing Temperature" Journal of the Semiconductor & Display Technology, vol. 16, No. 1, pp. 97-101, 2017.
  3. Kim, Y. H., Heo, J. S., Kim, T. H., Park, S., Yoon, M. H., Kim, J. wom., Oh, M. S., Yi, G. R., Noh, Y. Y. and Park, S. K. "Flexible metal-oxide devices made by roomtemperature photochemical activation of sol-gel films," nature, vol. 489, pp. 128-133, 2012 https://doi.org/10.1038/nature11434
  4. Norton, D. P., "Synthesis and properties of epitaxial electronic oxide thin-film materials," Mater. Sci. Eng. R-Rep., vol. 43, pp. 139-247, 2004. https://doi.org/10.1016/j.mser.2003.12.002
  5. Kim, H. S., Kim, M. G., Ha, Y. G., Kanatzidis, M. G., Marks, T. J. and Facchetti, A. "Low-temperature solution-processed amorphous indium tin oxide fieldeffect transistors," J. Am. Chem. Soc., vol. 131, pp. 10826-10827, 2009. https://doi.org/10.1021/ja903886r
  6. Kamiya, T., Nomura, K. and Hosono, H. "Present status of amorphous In-Ga-Zn-O thin-film transistors," Sci. Technol. Adv. Mater., vol. 11, pp. 1-23, 2009.
  7. Sun, Y. and Rogers, J. A. "Inorganic semiconductors for flexible electronics," Adv. Mater., vol. 19, pp. 1897-1916, 2007. https://doi.org/10.1002/adma.200602223
  8. Jeong, S., Ha, Y. G., Moon, J., Facchetti, A. and Marks, T. J. (2010). "Role of gallium doping in dramatically lowering amorphous-oxide processing temperatures for solution-derived indium zinc oxide thin-film transistors," Adv. Mater., vol. 22, pp. 1346-1350, 2010. https://doi.org/10.1002/adma.200902450
  9. Park, J. S., Jeong, J. K., Mo, Y. G., Kim, H. D. and Kim, S. I. "Improvements in the device characteristics of amorphous indium gallium zinc oxide thin-film transistors by Ar plasma treatment," Appl. Phys. Lett., vol. 90, pp. 262106, 2007. https://doi.org/10.1063/1.2753107
  10. Ji, K. H., Kim, J. I., Jung, H. Y., Park, S. Y., Choi, R., Kim, U. K., Hwang, C. S., Lee, D. S., Hwang, H. S. and Jeong, J. K. "Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors," Appl. Phys. Lett., vol. 98, pp. 103509, 2011. https://doi.org/10.1063/1.3564882
  11. Jeong, J. K., Jeong, J. H., Yang, H. W., Park, J. S., Mo, Y. G. and Kim, H. D. "High performance thin film transistors with cosputtered amorphous indium gallium zinc oxide channel." Appl. Phys. Lett., vol. 91, pp. 113505, 2007. https://doi.org/10.1063/1.2783961
  12. Kim, D. N., Kim, D. L., Kim, G. H., Kim, S. J., Rim, Y. S., Jeong, W. H. and Kim, H. J. "The effect of La in InZnO systems for solution-processed amorphous oxide thin-film transistors." Appl. Phys. Lett., vol. 97, pp. 192105, 2010. https://doi.org/10.1063/1.3506503
  13. Tak, Y. J., Yoon, D. H., Yoon, S., Choi, U. H., Sabri, M. M., Ahn, B. D. and Kim, H. J. (2014). "Enhanced Electrical Characteristics and Stability Via Simultaneous Ultraviolet and Thermal Treatment of Passivated Amorphous In-Ga-Zn-O Thin-Film Transistors," ACS Appl. Mater. Interfaces, vol. 6, pp. 6399-6405, 2014. https://doi.org/10.1021/am405818x
  14. Liu, P., Chen, T. P., Li, X. D., Liu, Z., Wong, J. I., Liu, Y. and Leong, K. C. (2013). "Effect of exposure to ultraviolet-activated oxygen on the electrical characteristics of amorphous indium gallium zinc oxide thin film transistors," ECS Solid State Lett., vol. 2, pp. Q21-Q24, 2013. https://doi.org/10.1149/2.005304ssl