References
- Cintula, P. (2006), "Weakly Implicative (Fuzzy) Logics I: Basic properties", Archive for Mathematical Logic 45: pp. 673-704. https://doi.org/10.1007/s00153-006-0011-5
- Cintula, P., Horcik, R., and Noguera, C. (2013), "Non-associative substructural logics and their semilinear extensions: axiomatization and completeness properties", Review of Symbolic Logic 6: pp. 394-423. https://doi.org/10.1017/S1755020313000099
- Cintula, P., Horcik, R., and Noguera, C. (2015), "The quest for the basic fuzzy logic", in F. Montagna (ed.) Petr Hajek on Mathematical Fuzzy Logic, Dordrecht: Springer, pp. 245-290.
- Cintula, P. and Noguera, C. (2011), A general framework for mathematical fuzzy logic, in P. Cintula, P. Hájek, and C. Noguera (eds.) Handbook of Mathematical Fuzzy Logic, vol 1, London: College publications, pp. 103-207.
- Diaconescu, D. (2010), "Kripke-style semantics for non-commutative monoidal t-norm logic", Journal of Multiple-Valued Logic and Soft Computing 16: pp. 247-263.
- Diaconescu, D. and Georgescu, G. (2007), "On the forcing semantics for monoidal t-norm based logic", Journal of Universal Computer Science 13: pp. 1550-1572.
- Esteva, F. and Godo, L. (2001), "Monoidal t-norm based logic: towards a logic for left-continuous t-norms", Fuzzy Sets and Systems 124: pp. 271-288. https://doi.org/10.1016/S0165-0114(01)00098-7
- Hajek, P. (2003a), "Fuzzy logics with noncommutative conjunction", Journal of Logic and Computation 13: pp. 469-479. https://doi.org/10.1093/logcom/13.4.469
- Hajek, P. (2003b), "Observations on non-commutative fuzzy logic", Soft Computing 8: pp. 38-43. https://doi.org/10.1007/s00500-002-0246-y
- Metcalfe, G. and Montagna, F. (2007), "Substructural Fuzzy Logics", Journal of Symbolic Logic 72: pp. 834-864. https://doi.org/10.2178/jsl/1191333844
- Metcalfe, G., Olivetti, N., and Gabbay, D. (2009), Proof Theory for Fuzzy Logics, Springer.
-
Montagna, F. and Ono, H. (2002), "Kripke semantics, undecidability and standard completeness for Esteva and Godo's Logic
$MTL\forall$ ", Studia Logica 71: pp. 227-245. https://doi.org/10.1023/A:1016500922708 - Montagna, F. and Sacchetti, L. (2003), "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly 49: pp. 629-641. https://doi.org/10.1002/malq.200310068
- Montagna, F. and Sacchetti, L. (2004), "Corrigendum to "Kripke-style semantics for many-valued logics", Mathematical Logic Quaterly 50: pp. 104-107. https://doi.org/10.1002/malq.200310081
- Tsinakis, C. and Blount, K. (2003), "The structure of residuated lattices", International Journal of Algebra and Computation 13: pp. 437-461. https://doi.org/10.1142/S0218196703001511
- Wang, S. (2013) "Logics for residuated pseudo-uninorms and their residua", Fuzzy Sets and Systems 218: pp. 24-31. https://doi.org/10.1016/j.fss.2012.11.018
- Wang, S. and Zhao, B. (2009), "HpsUL is not the logic of pseudo-uninorms and their residua", Logic Journal of the IGPL 17: pp. 413-419. https://doi.org/10.1093/jigpal/jzp023
- Yang, E. (2012), "Kripke-style semantics for UL", Korean Journal of Logic 15 (1): pp. 1-15.
- Yang, E. (2014a), "Algebraic Kripke-style semantics for weakening-free fuzzy logics", Korean Journal of Logic 17: pp. 181-195.
- Yang, E. (2014b), "Algebraic Kripke-style semantics for three-valued paraconsistent logic", Korean Journal of Logic 17: pp. 441-460.
- Yang, E. (2015a), "Set-theoretic Kripke-style semantics for three-valued paraconsistent logic", Korean Journal of Logic 18: pp. 65-82.
- Yang, E. (2015b), "Two kinds of (binary) Kripke-style semantics for three-valued logic", Logique et Analyse 231: pp. 379-396.
- Yang, E. (2016), "Algebraic Kripke-style semantics for an extension of HpsUL, CnHpsUL*", Korean Journal of Logic 19: pp. 107-126.