DOI QR코드

DOI QR Code

Dual deep neural network-based classifiers to detect experimental seizures

  • Jang, Hyun-Jong (Department of Physiology, College of Medicine, The Catholic University of Korea) ;
  • Cho, Kyung-Ok (Department of Biomedicine & Health Sciences, The Catholic University of Korea)
  • Received : 2018.12.02
  • Accepted : 2019.01.09
  • Published : 2019.03.01

Abstract

Manually reviewing electroencephalograms (EEGs) is labor-intensive and demands automated seizure detection systems. To construct an efficient and robust event detector for experimental seizures from continuous EEG monitoring, we combined spectral analysis and deep neural networks. A deep neural network was trained to discriminate periodograms of 5-sec EEG segments from annotated convulsive seizures and the pre- and post-EEG segments. To use the entire EEG for training, a second network was trained with non-seizure EEGs that were misclassified as seizures by the first network. By sequentially applying the dual deep neural networks and simple pre- and post-processing, our autodetector identified all seizure events in 4,272 h of test EEG traces, with only 6 false positive events, corresponding to 100% sensitivity and 98% positive predictive value. Moreover, with pre-processing to reduce the computational burden, scanning and classifying 8,977 h of training and test EEG datasets took only 2.28 h with a personal computer. These results demonstrate that combining a basic feature extractor with dual deep neural networks and rule-based pre- and post-processing can detect convulsive seizures with great accuracy and low computational burden, highlighting the feasibility of our automated seizure detection algorithm.

Keywords

References

  1. World Health Organization. Epilepsy Fact Sheet. Geneva: World Health Organization; 2018.
  2. Berg AT, Berkovic SF, Brodie MJ, Buchhalter J, Cross JH, van Emde Boas W, Engel J, French J, Glauser TA, Mathern GW, Moshe SL, Nordli D, Plouin P, Scheffer IE. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005-2009. Epilepsia. 2010;51:676-685. https://doi.org/10.1111/j.1528-1167.2010.02522.x
  3. Sirven JI. Epilepsy: a spectrum disorder. Cold Spring Harb Perspect Med. 2015;5:a022848. https://doi.org/10.1101/cshperspect.a022848
  4. Pitkanen A, Lukasiuk K. Molecular and cellular basis of epileptogenesis in symptomatic epilepsy. Epilepsy Behav. 2009;14 Suppl 1:16-25. https://doi.org/10.1016/j.yebeh.2008.09.023
  5. Smith SJ. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:ii2-7.
  6. Koessler L, Benar C, Maillard L, Badier JM, Vignal JP, Bartolomei F, Chauvel P, Gavaret M. Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage. 2010;51:642-653. https://doi.org/10.1016/j.neuroimage.2010.02.067
  7. Aarabi A, Fazel-Rezai R, Aghakhani Y. A fuzzy rule-based system for epileptic seizure detection in intracranial EEG. Clin Neurophysiol. 2009;120:1648-1657. https://doi.org/10.1016/j.clinph.2009.07.002
  8. Chen D, Wan S, Xiang J, Bao FS. A high-performance seizure detection algorithm based on Discrete Wavelet Transform (DWT) and EEG. PLoS One. 2017;12:e0173138. https://doi.org/10.1371/journal.pone.0173138
  9. Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clin Neurophysiol. 2002;113:1873-1881. https://doi.org/10.1016/S1388-2457(02)00297-3
  10. Sinha S, Siddiqui KA. Definition of intractable epilepsy. Neurosciences (Riyadh). 2011;16:3-9.
  11. Grone BP, Baraban SC. Animal models in epilepsy research: legacies and new directions. Nat Neurosci. 2015;18:339-343. https://doi.org/10.1038/nn.3934
  12. Palus M. Nonlinearity in normal human EEG: cycles, temporal asymmetry, nonstationarity and randomness, not chaos. Biol Cybern. 1996;75:389-396. https://doi.org/10.1007/s004220050304
  13. Subha DP, Joseph PK, Acharya UR, Lim CM. EEG signal analysis: a survey. J Med Syst. 2010;34:195-212. https://doi.org/10.1007/s10916-008-9231-z
  14. Jaiswal AK, Banka H. Epileptic seizure detection in EEG signal using machine learning techniques. Australas Phys Eng Sci Med. 2018;41:81-94. https://doi.org/10.1007/s13246-017-0610-y
  15. LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436-444. https://doi.org/10.1038/nature14539
  16. Cho KO, Lybrand ZR, Ito N, Brulet R, Tafacory F, Zhang L, Good L, Ure K, Kernie SG, Birnbaum SG, Scharfman HE, Eisch AJ, Hsieh J. Aberrant hippocampal neurogenesis contributes to epilepsy and associated cognitive decline. Nat Commun. 2015;6:6606. https://doi.org/10.1038/ncomms7606
  17. Jeong KH, Lee KE, Kim SY, Cho KO. Upregulation of Kruppel-like factor 6 in the mouse hippocampus after pilocarpine-induced status epilepticus. Neuroscience. 2011;186:170-178. https://doi.org/10.1016/j.neuroscience.2011.02.046
  18. Racine RJ. Modification of seizure activity by electrical stimulation. II. Motor seizure. Electroencephalogr Clin Neurophysiol. 1972;32:281-294. https://doi.org/10.1016/0013-4694(72)90177-0
  19. Brulet R, Zhu J, Aktar M, Hsieh J, Cho KO. Mice with conditional NeuroD1 knockout display reduced aberrant hippocampal neurogenesis but no change in epileptic seizures. Exp Neurol. 2017;293:190-198. https://doi.org/10.1016/j.expneurol.2017.04.005
  20. Kim JE, Cho KO. The pilocarpine model of temporal lobe epilepsy and EEG monitoring using radiotelemetry system in mice. J Vis Exp. 2018;(132):e56831.
  21. Osorio I, Lyubushin A, Sornette D. Automated seizure detection: unrecognized challenges, unexpected insights. Epilepsy Behav. 2011;22 Suppl 1:S7-S17. https://doi.org/10.1016/j.yebeh.2011.09.011
  22. Dikanev T, Smirnov D, Wennberg R, Velazquez JL, Bezruchko B. EEG nonstationarity during intracranially recorded seizures: statistical and dynamical analysis. Clin Neurophysiol. 2005;116:1796-1807. https://doi.org/10.1016/j.clinph.2005.04.013
  23. Alarcon G, Binnie CD, Elwes RD, Polkey CE. Power spectrum and intracranial EEG patterns at seizure onset in partial epilepsy. Electroencephalogr Clin Neurophysiol. 1995;94:326-337. https://doi.org/10.1016/0013-4694(94)00286-T
  24. Akin M, Kiymik MK. Application of periodogram and AR spectral analysis to EEG signals. J Med Syst. 2000;24:247-256. https://doi.org/10.1023/A:1005553931564
  25. Mohseni HR, Maghsoudi A, Shamsollahi MB. Seizure detection in EEG signals: a comparison of different approaches. Conf Proc IEEE Eng Med Biol Soc. 2006;Suppl:6724-6727.
  26. Acharya UR, Sree SV, Alvin AP, Yanti R, Suri JS. Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. Int J Neural Syst. 2012;22:1250002. https://doi.org/10.1142/S0129065712500025
  27. Gajic D, Djurovic Z, Gligorijevic J, Di Gennaro S, Savic-Gajic I. Detection of epileptiform activity in EEG signals based on time-frequency and non-linear analysis. Front Comput Neurosci. 2015;9:38. https://doi.org/10.3389/fncom.2015.00038
  28. Tzallas AT, Tsipouras MG, Fotiadis DI. Automatic seizure detection based on time-frequency analysis and artificial neural networks. Comput Intell Neurosci . 2007;2007:80510.
  29. Williamson JR, Bliss DW, Browne DW, Narayanan JT. Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy Behav. 2012;25:230-238. https://doi.org/10.1016/j.yebeh.2012.07.007
  30. Zhang Y, Zhou W, Yuan Q, Wu Q. A low computation cost method for seizure prediction. Epilepsy Res. 2014;108:1357-1366. https://doi.org/10.1016/j.eplepsyres.2014.06.007
  31. Ansari AH, Cherian PJ, Caicedo A, Naulaers G, De Vos M, Van Huffel S. Neonatal seizure detection using deep convolutional neural networks. Int J Neural Syst. 2018. doi: 10.1142/S0129065718500119.
  32. Truong ND, Nguyen AD, Kuhlmann L, Bonyadi MR, Yang J, Ippolito S, Kavehei O. Convolutional neural networks for seizure prediction using intracranial and scalp electroencephalogram. Neural Netw. 2018;105:104-111. https://doi.org/10.1016/j.neunet.2018.04.018

Cited by

  1. Applications of deep learning for the analysis of medical data vol.42, pp.6, 2019, https://doi.org/10.1007/s12272-019-01162-9
  2. Deep Learning in Physiological Signal Data: A Survey vol.20, pp.4, 2020, https://doi.org/10.3390/s20040969
  3. Comparison of different input modalities and network structures for deep learning-based seizure detection vol.10, 2019, https://doi.org/10.1038/s41598-019-56958-y
  4. Deep Brain Stimulation Can Differentiate Subregions of the Human Subthalamic Nucleus Area by EEG Biomarkers vol.15, 2021, https://doi.org/10.3389/fnsys.2021.747681
  5. A Recent Investigation on Detection and Classification of Epileptic Seizure Techniques Using EEG Signal vol.11, pp.5, 2019, https://doi.org/10.3390/brainsci11050668