DOI QR코드

DOI QR Code

Decreased inward rectifier and voltage-gated K+ currents of the right septal coronary artery smooth muscle cells in pulmonary arterial hypertensive rats

  • Kim, Sung Eun (Department of Physiology, Seoul National University College of Medicine) ;
  • Yin, Ming Zhe (Department of Physiology, Seoul National University College of Medicine) ;
  • Kim, Hae Jin (Department of Physiology, Seoul National University College of Medicine) ;
  • Vorn, Rany (Department of Nursing, Chung-Ang University) ;
  • Yoo, Hae Young (Department of Nursing, Chung-Ang University) ;
  • Kim, Sung Joon (Department of Physiology, Seoul National University College of Medicine)
  • 투고 : 2019.10.10
  • 심사 : 2019.11.28
  • 발행 : 2020.01.01

초록

In vascular smooth muscle, K+ channels, such as voltage-gated K+ channels (Kv), inward-rectifier K+ channels (Kir), and big-conductance Ca2+-activated K+ channels (BKCa), establish a hyperpolarized membrane potential and counterbalance the depolarizing vasoactive stimuli. Additionally, Kir mediates endothelium-dependent hyperpolarization and the active hyperemia response in various vessels, including the coronary artery. Pulmonary arterial hypertension (PAH) induces right ventricular hypertrophy (RVH), thereby elevating the risk of ischemia and right heart failure. Here, using the whole-cell patch-clamp technique, we compared Kv and Kir current densities (IKv and IKir) in the left (LCSMCs), right (RCSMCs), and septal branches of coronary smooth muscle cells (SCSMCs) from control and monocrotaline (MCT)-induced PAH rats exhibiting RVH. In control rats, (1) IKv was larger in RCSMCs than that in SCSMCs and LCSMCs, (2) IKv inactivation occurred at more negative voltages in SCSMCs than those in RCSMCs and LCSMCs, (3) IKir was smaller in SCSMCs than that in RCSMCs and LCSMCs, and (4) IBKCa did not differ between branches. Moreover, in PAH rats, IKir and IKv decreased in SCSMCs, but not in RCSMCs or LCSMCs, and IBKCa did not change in any of the branches. These results demonstrated that SCSMC-specific decreases in IKv and IKir occur in an MCT-induced PAH model, thereby offering insights into the potential pathophysiological implications of coronary blood flow regulation in right heart disease. Furthermore, the relatively smaller IKir in SCSMCs suggested a less effective vasodilatory response in the septal region to the moderate increase in extracellular K+ concentration under increased activity of the myocardium.

키워드

참고문헌

  1. Werner ME, Ledoux J. $K^+$ channels in biological processes: vascular $K^+$ channels in the regulation of blood pressure. J Receptor Ligand Channel Res. 2014;7:51-60. https://doi.org/10.2147/JRLCR.S36062
  2. Nelson MT, Quayle JM. Physiological roles and properties of potassium channels in arterial smooth muscle. Am J Physiol. 1995;268(4 Pt 1):C799-C822. https://doi.org/10.1152/ajpcell.1995.268.4.C799
  3. An JR, Li H, Seo MS, Park WS. Inhibition of voltage-dependent $K^+$ current in rabbit coronary arterial smooth muscle cells by the class Ic antiarrhythmic drug propafenone. Korean J Physiol Pharmacol. 2018;22:597-605. https://doi.org/10.4196/kjpp.2018.22.5.597
  4. Knot HJ, Zimmermann PA, Nelson MT. Extracellular $K^+$-induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier $K^+$ channels. J Physiol. 1996;492 (Pt 2):419-430. https://doi.org/10.1113/jphysiol.1996.sp021318
  5. Longden TA, Nelson MT. Vascular inward rectifier $K^+$ channels as external $K^+$ sensors in the control of cerebral blood flow. Microcirculation. 2015;22:183-196. https://doi.org/10.1111/micc.12190
  6. Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch. 2018;470:1271- 1289. https://doi.org/10.1007/s00424-018-2151-y
  7. Gregg DE. The coronary circulation. Physiol Rev. 1946;26:28-46. https://doi.org/10.1152/physrev.1946.26.1.28
  8. Goodwill AG, Dick GM, Kiel AM, Tune JD. Regulation of coronary blood flow. Compr Physiol. 2017;7:321-382. https://doi.org/10.1002/cphy.c160016
  9. Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA. Prognostic value of coronary vascular endothelial dysfunction. Circulation. 2002;106:653-658. https://doi.org/10.1161/01.CIR.0000025404.78001.D8
  10. van Wolferen SA, Marcus JT, Westerhof N, Spreeuwenberg MD, Marques KM, Bronzwaer JG, Henkens IR, Gan CT, Boonstra A, Postmus PE, Vonk-Noordegraaf A. Right coronary artery flow impairment in patients with pulmonary hypertension. Eur Heart J. 2008;29:120-127. https://doi.org/10.1093/eurheartj/ehm567
  11. Kim HJ, Yoo HY. Hypoxic pulmonary vasoconstriction and vascular contractility in monocrotaline-induced pulmonary arterial hypertensive rats. Korean J Physiol Pharmacol. 2016;20:641-647. https://doi.org/10.4196/kjpp.2016.20.6.641
  12. Farber HW, Loscalzo J. Pulmonary arterial hypertension. N Engl J Med. 2004;351:1655-1665. https://doi.org/10.1056/NEJMra035488
  13. Stenmark KR, Meyrick B, Galie N, Mooi WJ, McMurtry IF. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol. 2009;297:L1013-L1032. https://doi.org/10.1152/ajplung.00217.2009
  14. Rabinovitch M. Monocrotaline-induced pulmonary hypertension in rats. In: Simon DI, Rogers C, editors. Vascular disease and injury: preclinical research. Totowa : Humana Press ; 2001. p. 261-280.
  15. Boucherat O, Chabot S, Antigny F, Perros F, Provencher S, Bonnet S. Potassium channels in pulmonary arterial hypertension. Eur Respir J. 2015;46:1167-1177. https://doi.org/10.1183/13993003.00798-2015
  16. Nakazawa H, Hori M, Ozaki H, Karaki H. Mechanisms underlying the impairment of endothelium-dependent relaxation in the pulmonary artery of monocrotaline-induced pulmonary hypertensive rats. Br J Pharmacol . 1999;128:1098-1104. https://doi.org/10.1038/sj.bjp.0702878
  17. Xie L, Lin P, Xie H, Xu C. Effects of atorvastatin and losartan on monocrotaline-induced pulmonary artery remodeling in rats. Clin Exp Hypertens. 2010;32:547-554. https://doi.org/10.3109/10641963.2010.503295
  18. Meloche J, Lampron MC, Nadeau V, Maltais M, Potus F, Lambert C, Tremblay E, Vitry G, Breuils-Bonnet S, Boucherat O, Charbonneau E, Provencher S, Paulin R, Bonnet S. Implication of inflammation and epigenetic readers in coronary artery remodeling in patients with pulmonary arterial hypertension. Arterioscler Thromb Vasc Biol. 2017;37:1513-1523. https://doi.org/10.1161/ATVBAHA.117.309156
  19. Gautier M, Hyvelin JM, de Crescenzo V, Eder V, Bonnet P. Heterogeneous Kv1 function and expression in coronary myocytes from right and left ventricles in rats. Am J Physiol Heart Circ Physiol . 2007;292:H475-H482. https://doi.org/10.1152/ajpheart.00774.2005
  20. Morales-Cano D, Moreno L, Barreira B, Pandolfi R, Chamorro V, Jimenez R, Villamor E, Duarte J, Perez-Vizcaino F, Cogolludo A. Kv7 channels critically determine coronary artery reactivity: leftright differences and down-regulation by hyperglycaemia. Cardiovasc Res. 2015;106:98-108. https://doi.org/10.1093/cvr/cvv020
  21. Hyvelin JM, Gautier M, Lemaire MC, Bonnet P, Eder V. Adaptative modifications of right coronary myocytes voltage-gated $K^+$ currents in rat with hypoxic pulmonary hypertension. Pflugers Arch. 2009;457:721-730. https://doi.org/10.1007/s00424-008-0546-x
  22. Lee S, Yang Y, Tanner MA, Li M, Hill MA. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation. Microcirculation. 2015;22:109-121. https://doi.org/10.1111/micc.12183
  23. Quayle JM, Dart C, Standen NB. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol. 1996;494 (Pt 3):715-726. https://doi.org/10.1113/jphysiol.1996.sp021527
  24. Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE. Activation of inward rectifier $K^+$ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol. 2005;289:H2461-H2467. https://doi.org/10.1152/ajpheart.00331.2005
  25. Smith PD, Brett SE, Luykenaar KD, Sandow SL, Marrelli SP, Vigmond EJ, Welsh DG. KIR channels function as electrical amplifiers in rat vascular smooth muscle. J Physiol. 2008;586:1147-1160. https://doi.org/10.1113/jphysiol.2007.145474

피인용 문헌

  1. Antioxidant and biological activities of untreated and steam-treated Corni fructus extracts vol.25, pp.3, 2020, https://doi.org/10.11002/kjfp.2018.25.3.366
  2. 기능성식품으로서 마늘의 혈압 개선 기능성 평가: 마늘건조분말의 준건강인 대상 연구에 대한 메타분석 vol.54, pp.5, 2020, https://doi.org/10.4163/jnh.2021.54.5.459