Abstract
The purpose of this study is to investigate how the degree of distribution influences the calibration of snow and runoff in distributed hydrological models using a multi-criteria calibration method. The Hydrology Laboratory-Research Distributed Hydrologic Model (HL-RDHM) developed by NOAA-National Weather Service (NWS) is employed to estimate optimized parameter sets. We have 3 scenarios depended on the model complexity for estimating best parameter sets: Lumped, Semi-Distributed, and Fully-Distributed. For the case study, the Durango River Basin, Colorado is selected as a study basin to consider both snow and water balance components. This study basin is in the mountainous western U.S. area and consists of 108 Hydrologic Rainfall Analysis Project (HRAP) grid cells. 5 and 13 parameters of snow and water balance models are calibrated with the Multi-Objective Shuffled Complex Evolution Metropolis (MOSCEM) algorithm. Model calibration and validation are conducted on 4km HRAP grids with 5 years (2001-2005) meteorological data and observations. Through case study, we show that snow and streamflow simulations are improved with multiple criteria calibrations without considering model complexity. In particular, we confirm that semi- and fully distributed models are better performances than those of lumped model. In case of lumped model, the Root Mean Square Error (RMSE) values improve by 35% on snow average and 42% on runoff from a priori parameter set through multi-criteria calibrations. On the other hand, the RMSE values are improved by 40% and 43% for snow and runoff on semi- and fully-distributed models.
본 연구에서는 다중최적화기법을 이용하여 분포형 수문모형의 매개변수 보정 과정에서 분포형의 정도가 융설과 유량의 최적화에 어떠한 영향을 미치고 있는 가를 연구하였다. 분포형 수문모형으로는 HL-RDHM를 이용하였고, 분포형 정도에 따라 집중형, 준분포형, 완전분포형 등 3개의 모형을 구성하여 최적 매개변수를 산정하였다. 유역은 108개의 격자로 구성되며, 격자별로 융설과 관련하여 15개, 유출량 관련 13개의 매개변수를 다중최적화기법인 MOSCEM를 이용하여 최적화하였다. 최적 매개변수 산정을 위하여 2004-2005년의 기상학적 자료와 융설량과 유출량 관측자료가 이용되었고, 최적화된 매개변수를 2001-2004년의 자료를 이용하여 검증하였다. 다중최적화기법 적용 결과 집중형의 경우, 초기 값에 의한 결과로 부터 RMSE 값이 융설량은 평균 35%, 유출량은 약 42% 개선되었고, 준분포형과 완전분포형의 경우는 융설량은 평균 40%, 유출량은 약 43% 정도의 RSME 값이 향상되었다. 전반적으로 집중형보다는 분포형 모형이 최적화 과정에서 융설과 유출량 예측에 더 나은 성과를 보여주었지만, 준포형과 완전분포형의 경우 최적화 성과에서 큰 차이를 보이지 않았고, 유출보다는 융설에서 분포형 정도에 따른 모형의 민감도가 더 높은 것을 확인되었다.