DOI QR코드

DOI QR Code

Assessing removal effects on particulate matters using artificial wetland modules

인공 습지 모형을 활용한 습지의 미세먼지 저감 효과

  • Son, Ga Yeon (Department of Biology Education, Seoul National University) ;
  • Kim, Jae Geun (Center for Education Research, Seoul National University)
  • 손가연 (서울대학교 생물교육과) ;
  • 김재근 (서울대학교 교육종합연구원)
  • Received : 2020.01.03
  • Accepted : 2020.02.14
  • Published : 2020.02.29

Abstract

To assess the wetland systems' capability to reduce fine dust, we used an artificial wetland module of small-sized greenhouse (70cm W × 70cm L × 60cm H) which creates a closed system. Experiment was performed twice using four species in each experiment. Non-plantation, one species, or two species condition was created in each mesocosm. We measured air quality, primarily PM2.5 and PM10 at the initial open mesocosms and 1hr later since mesocosms were closed. The dry weight of vegetation was measured at the 2nd experiment. The decreased amount of PM2.5 and PM10 was 13.7±1.3 and 13.2±1.3 ㎍·m-3hr-1 in wetland condition and 15.0±1.4 and 13.8±1.5 ㎍·m-3hr-1 in dryland condition, respectively. In 2nd experiment, the decreased amount of PM 2.5 and PM 10 in wetland condition was 13.7±1.3 and 9.2±1.5 ㎍·m-3hr-1, 15.0±1.4 and 8.8±1.4 ㎍·m-3hr-1 in dryland condition, respectively. Wetland showed higher removal effect due to its high productivity leading to more effective absorption of particulate matter. Furthermore, the aquatic characteristics of wetland system and high humidity helped purifying the air quality. This can be seen as another value of wetlands, which can be presented as one of the solutions to the problem of fine dust.

본 연구에서는 습지 조성 및 습지 내 식물에 따른 미세먼지 저감 능력 규명을 통해 습지생태계의 가치에 대하여 새로운 시각의 해석을 제공하고자 하였다. 소형 간이온실(70cm W × 70cm L × 60cm H)로 닫힌계를 형성하였으며, 간이온실 내 메조코즘에 일정 수위가 유지되는 습지(W) 혹은 건조 상태를 유지하는 육상(L) 조건을 조성하였다. 육상과 습지 조건 각각에 식물종 미식재, 단일종 식재 그리고 두 종 혼합 식재의 총 8가지 조건을 4반복씩 조성하였다. 열린계의 메조코즘에서 초기 대기질과 닫힌계로의 전환 1시간 경과한 후의 대기질을 측정하여 공기 정화능을 확인하였다. 각 실험구의 대기질로서 PM2.5, PM10농도를 중점적으로 측정하였으며, 2차 실험에서는 식물체의 건중량을 측정하였다. 닫힌계 형성 1시간 후 습지 환경에서의 PM2.5와 PM10의 감소량은 1차 실험에서 각각 13.7±1.3, 15.0±1.4 ㎍·m-3hr-1로 나타났으며, 2차 실험에서는 각각 10.5±2.1, 11.2±2.2 ㎍·m-3hr-1로 나타났다. 육지 환경에서의 미세먼지 감소량은 1차 실험에서 각각 13.2±1.3, 13.8±1.5 ㎍·m-3hr-1로 나타났으며, 2차 실험에서는 각각 9.2±1.5, 8.8±1.4 ㎍·m-3hr-1로 나타났다. 이는 습지의 높은 생산성으로 인한 식물의 생장으로 식물의 조직에 미세먼지 흡착을 통한 저감이나 증산작용을 통한 수분, 또 습지 자체의 수생태계적 특성을 통한 미세먼지 저감 효과가 드러난 것으로 여겨진다. 따라서 습지의 미세먼지 저감 능력은 습지의 또 다른 가치로 볼 수 있으며 이는 미세먼지 문제에 대한 해결방안 중의 하나로 제시될 수 있을 것이다.

Keywords

References

  1. Anderson, HR (2008). Air pollution and mortality: a history. Atmospheric Environment, 43(1), pp. 142-152. [DOI:10.1016/j.atmosenv.2008.09.026]
  2. Choe, J and Lee, YS (2015). A study on the impact of PM2.5 emissions on respiratory diseases. J. of Environmental Policy and Administration, 24(4), pp. 155-172. [Korean Literature] [DOI: 10.15301/jepa.2015.23.4.155]
  3. Chow, JC and Watson, JG (2002). Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by the chemical mass balance receptor model. Energy and Fuels, 16(2), pp. 222-260. [DOI: 10.1021/ef0101715]
  4. Ha, EH, Lee, JT, Kim, H, Hong, YC, Lee, BE, Park, HS and Christiani, DC (2003). Infant susceptibility of mortality to air pollution in Seoul, South Korea. Pediatrics, 111(2), pp. 284-290. [DOI: 10.1542/peds.111.2.284]
  5. Hong, MG and Kim, JG (2017). An analysis of trends in wetland function assessments and further suggestions. J. of Wetlands Research 19(1), pp. 1-15. [Korean Literature] [DOI: 10.17663/JWR.2017.19.1.001]
  6. Hong, MG, Park, H, Nam, BE and Kim, JG (2019). Vegetational characteristics of abandoned paddy terraces in comparison with natural and constructed wetlands. J. of Wetland Research, 21(3), pp. 199-206. [DOI: 10.17663/JWR.2019.21.3.199]
  7. Jang, AS (2015). Review: Particulate matter and bronchial asthma. Korean J. of Medicine, 88(2), pp. 150-155. [Korean Literature] [DOI: 10.3904/kjm.2016.91.2.106]
  8. Jin, H, Lee, J, Lee, K, Lee, H, Kim, B, Lee, D and Hong, Y (2012). The Estimation of PM2.5 Emissions and Their contribution analysis by source categories in Korea. J. of Korean Society for Atmospheric Environment, 28(2), pp. 211-221. [Korean Literature] [DOI: 10.5572/KOSAE.2012.28.2.211]
  9. Kang, SJ, Kang, JG, Hong, I and Yeo, HK (2012). Proposal of functional assessment for wetland-type abandoned channel. J. of Wetlands Research, 14(4), pp. 547-559. [Korean Literature] [DOI: 10.17663/JWR.2012.14.4.547]
  10. Engelhardt, KAM and Ritchie, ME (2001). Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature, 411, pp. 687-689. https://doi.org/10.1038/35079573
  11. Kim, MY (2004). Physical and chemical characteristics of Asian dust. J. of Korean Medical Association, 47(5), pp. 453-464. [DOI: 10.5124/jkma.2004.47.5.453]
  12. Ko, HJ, Lee, YS, Kim, WH, Song, JM and Kang, CH (2014). Chemical composition characteristics of fine particulate matter at atmospheric boundary layer of background area in fall, 2012. J. of the Korean Chemical Society, 58(3), pp. 267-276. [Korean Literature] [DOI: 10.5012/jkcs.2014.58.3.267]
  13. Kwon, K and Park, B (2017). Effects of indoor greening method on temperature, relative humidity and particulate matter concentration. J. of The Korean Institute of Landscape Architecture, 45(4), pp. 1-10. [Korean Literature] [DOI:10.9715/KILA.2017.45.4.001]
  14. Kwon, K and Park, B (2018). Particulate matter removal of indoor plants, Dieffenbachia amoena 'Marianne' and Spathiphyllum spp. according to light intensity. J. of The Korean Institute of Landscape Architecture, 46(2), pp. 62-68. [Korean Literature] [DOI:1 0.9715/KILA.2018.46.2.062] https://doi.org/10.9715/KILA.2018.46.2.062
  15. Lee, CH, Choi, B and Chun MY (2015). Stabilizing soil moisture and indoor air quality purification in a wall-typed botanical biofiltration system controlled by humidifying cycle. Korean J. of Horticultural Science & Technology, 33(4), pp. 605-617. [Korean Literature] [DOI:10.7235/hort.2015.15047]
  16. Lee, K, Kim, S and Kim D (2015) Ion compositional existence forms of PM10 in Seoul area. J. of Korean Society of Environmental Engineers, 37(4), pp. 197-203. [Korean Literature] [DOI: 10.4491/KSEE.2015.37.4.197]
  17. Ministry of environment (2019). Particulate Matter Management Plan (2020-2024)
  18. Myong, J (2016). Health effects of particulate matter. Korean J. of Medicine, 91(2), pp. 106-113. [Korean Literature] [DOI: 10.3904/kjm.2016.91.2.106]
  19. National Institute of Environmental Research (2012). Emission Sources and Behaviour of PM2.5 Organic Materials (III)
  20. Park, H and Jo, YM (2013). Regulation standard of fine particles and control techniques of emission sources. J. of Korean Society for Atmospheric Environment, 29(4), pp. 486-503. https://doi.org/10.5572/KOSAE.2013.29.4.486
  21. Pateraki, S, Asmiakopoulos, DN, Flocas, HA, Maggos, T and Vasilakos, C (2012). The role of meteorology on different sized aerosol fractions ($PM_{2.5},\;PM_{10}\;PM_{2.5-10}$). Science of the Total Environment, 419, pp. 124-135. [DOI: j.scitotenv.2011.12.064] https://doi.org/10.1016/j.scitotenv.2011.12.064
  22. Prajapati, SK and Tripathi, BD (2008). Biomonitoring seasonal variation of urban air polycyclic aromatic hydrocarbons (PAHs) using Ficus benghalensis leaves. J. of Environmental Pollution, 151(3), pp. 543-548. [DOI:10.1016/j.envpol.2007.04.013]
  23. Qiu, D, Liu, J, Zhu, L, Mo, L and Zhang, Z (2015). Particulate matter assessment of a wetland in Beijing. J. of Environmental Sciences, 36, pp. 93-101. [DOI: 10.1016/j.jes.2015.04.016]
  24. Roucoux, KH, Lawson, IT, Baker, TR, Torres, DC, Draper, FC, Lahteenoha, O, Gilmore, MP, Coronado, ENH, Kelly, TJ, Mitchard, ETA and Vriesendorp, CF (2017). Threats to intact tropical peatlands and opportunities for their conservation. Conservation Biology, 31, pp. 1283-1292. [DOI: 10.1111/cobi.12925]
  25. Soreanu, G, Dixon, M and Darlington, A (2013). Botanical biofiltration of indoor gaseous pollutants - A mini-review. Chemical Engineering Journal, 229(1), pp. 585-594. [DOI: 10.1016/j.cej.2013.06.074]
  26. Tai, AP, Mickley, LJ and Jacob, DJ (2010). Correlations between fine particulate matter ($PM_{2.5}$) and meteorological variables in the United States: Implications for the sensitivity of $PM_{2.5}$ to climate change. Atmospheric Environment, 44(32), pp. 3976-3984. [DOI: 10.1016/j.atmosenv.2010.06.060]
  27. Terazaghi, E, Wild, E, Zacchello, G, Cerabolini, BE, Jones, KC and DiGuardo, A (2013). Forest filter effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs. Atmospheric Environment, 74, pp. 378-384. [DOI: 10.1016/j.atmosenv.2013.04.013]
  28. Tiwari S, Srivastava AK, Bisht DS, Bano T, Singh S, Behura S, Srivastava M, Chate DM, Padmanabhamurty B (2009). Black carbon and chemical characteristics of PM10 and PM2.5 at urban site of North India. J. of Atmospheric Chemistry, 62(3). pp. 193-209 [DOI: 10.1007/s10874-010-9148-z]
  29. Xu, X and Kim, J (2017). Planting design strategies and green space planning to mitigate respirable particulate matters -case studies in Beijing, China-. J. of the Korean Institute of Landscape Architecture, 45(6). pp. 40-49. [Korean Literature] [DOI: 10.9715/KILA.2017.45.6.040]
  30. Yang, DZ, Yu, HQ, Ding, GA, Wang, SF and He, DS (2002). An analysis of aerosols in the lower-level atmosphere over Beijing northern suburbs in winter. Quarterly J. of Applied Meteorology, 13(S1), pp. 110-125