Characterizations of a Cold Trap System for the Process Stabilization of Al2O3 by ALD Equipment

ALD 장비의 Al2O3 공정 안정화를 위한 저온 트랩 장치의 특성 평가

  • Yong Hyeok Seo (Department of Electronics Engineering, Gachon University) ;
  • Won Woo Lee (Department of Electronics Engineering, Gachon University) ;
  • In Hwan Kim (Process Innovation Team, MILAEBO Co., Ltd.) ;
  • Ji Eun Han (Process Innovation Team, MILAEBO Co., Ltd.) ;
  • Yeon Ju Lee (Process Innovation Team, MILAEBO Co., Ltd.) ;
  • Che Hoo Cho (Process Innovation Team, MILAEBO Co., Ltd.) ;
  • Yongmin Jeon (Department of Biomedical Engineering, Gachon University) ;
  • Eou-Sik Cho (Department of Electronics Engineering, Gachon University) ;
  • Sang Jik Kwon (Department of Electronics Engineering, Gachon University)
  • 서용혁 (가천대학교 전자공학과) ;
  • 이원우 (가천대학교 전자공학과) ;
  • 김인환 ((주)미래보 공정혁신팀) ;
  • 한지은 ((주)미래보 공정혁신팀) ;
  • 이연주 ((주)미래보 공정혁신팀) ;
  • 조재효 ((주)미래보 공정혁신팀) ;
  • 전용민 (가천대학교 의공학과) ;
  • 조의식 (가천대학교 전자공학과) ;
  • 권상직 (가천대학교 전자공학과)
  • Received : 2024.03.04
  • Accepted : 2024.03.21
  • Published : 2024.03.31

Abstract

The application of the technology for forming Al2O3 thin films using ALD(atomic layer deposition) method is rapidly increasing in the semiconductor and display fields. In order to increase the efficiency of the ALD process in a mass production line, metallic by-products generated from the ALD process chamber must be effectively collected. By collecting by-products flowing out of the chamber with a cold trap device before they go to the vacuum pump, damage to the vacuum pump can be prevented and the work room can be maintained stably, resulting in increased process flow rate. In this study, a cold trap was installed between the ALD process chamber and the dry pump to measure and analyze by-products generated during the Al2O3 thin film deposition process. As a result, it was confirmed that Al and O elements were discharged, and the collection forms were two types: bulk and powder. And the binding energy peaked at 73.7 ~ 74.3 eV, the binding energy of Al 2p, and 530.7 eV, the binding energy of O 1s, indicating that the binding structure was Al-O.

Keywords

References

  1. Chow, P.C.Y.; and Someya, T., "Organic Photodetectors for Next-Generation Wearable Electronics" Advanced Materials, Vol. 32(15), pp. 1902045, 2020
  2. Corina, B., Daniele, B-P., Alain, F., Claude, B., Philippe, R., Genevieve, G., Elisabeth, B., Alexandre, C., and Mustapha, L., "Al2O3 thin films deposited by thermal atomic layer deposition: Characterization for photovoltaic aplications", Thin Solid Films, Vol.617, pp. 108~113, 2016.
  3. Kwang Su, Y., Dong-Gyu K., Seunghwan L., Won-Bum L., and Jin-Seong P., "Atmospheric pressure spatial ALD of Al2O3 thin films for flexible PEALD IGZO TFT application", Ceramics Inter., Vol. 48, pp. 18803~18810, 2022
  4. Spessot, A., Matagne, P., Arimura, H., Ganguly, J., Ritzenthaler, R., Bastos, J., Sarkar, R., Capogreco, E., Chen, Y., and Horiguchi, N., "Compact thermally stable high voltage FinFET with 40 nm tox and lateral break-down >35V for 3D NAND flash periphery application", Jpn. J. of Appl. Phys., Vol. 63, pp. 03SP12-1~12-7, 2024.
  5. Y., Amin, B., Xingwei, D., Panpan, Z., Shiyang, H., Sebastian, L., Mikko, L., Jaakko, J., Mikko, K., Timo, S., and Kornelius, N., "Low-Temperature Atomic Layer Deposition of High-k SbOx for Thin Film Transistors", Adv. Electron. Mater., Vol. 8, pp. 2101334-1~10, 2022.
  6. GeonHo, B., Ji-hoon, B., Hye-mi, K., Seunghwan, L., Yusung, J., Hyung Soon, P., Deok-Sin, K., Sangho, K., Yongjoo, P., and Jin-Seong P., "Atomic layer chemical vapor deposition of SiO2 thin films using a chlorine-free silicon precursor for 3D NAND applications", Ceramics International, Vol. 47, pp 19036-19042, 2021.
  7. Byoung-Hwa, K., Chul Woong, J., Hyunsu, C., Chanmo, K. Jong-Heon, Y., Jin-Wook, S., Gi Heon, K.,Sukyung, C., Sooji, N., Kukjoo, K., Chun-Won, B., Nam Sung, C., and Sujung, K., "Organic/Inorganic Hybrid Thin-Film Encapsulation Using Inkjet Printing and PEALD for Industrial Large-Area Process Suitability and Flexible OLED Application", ACS Appl. Mater. Interfaces, Vol. 13, pp. 55391~55402, 2021.
  8. Yun, L., Yingfei, X., Huizhi, Y., Kun C., and Rong, C., "Thin film encapsulation for the organic light-emitting diodes display via atomic layer deposition", J. Mat. Res., pp. 681~700, 2019.
  9. A. J. M., "An improved high-conductance cold-trap" J. Sci. Instrum., Vol. 32, pp. 400~401, 1955.
  10. Holland, L., Laurenson, L., and Priestland, C., Contamination in mtra-High Vacuum Plant", Rev. Sci. Instrum., Vol 34, pp. 377-382, 1963.
  11. Dyer, D. F., mayne, R. W., and Sunderland, J. E., "Total pressure drop across a cold trap in low-vacuum applications", Brit. J. Appl. Phys., Vol. 18, pp. 297~308, 1967.
  12. Altaf H, N., Muhammad A, R., Nek Muhammad, S., Akhtar H, M., and Hussain S., "Versatile Ultra High Vacuum System for ION Trap Experiments: Design and Implementation", Int. J. of Adv. in Res. & Tech., Vol., pp. 502~510, 2013.
  13. Murugesan, N., Faizal, V.A., Prabhu , E., Shyam Kumar, S., Sajal G., Sree Rama Murthy, A., Sudha, R., Hrudananda J., Rajesh G., and Jayaraman, V., "Studies on In-situ regeneration of cold trap of a Bench-Top sodium loop", Nuclear Eng. and Design, Vol. 403, pp. 112156, 2023.
  14. Chang-Soo, Y., Jung-Sik, K., Jang-Woo, C., Moo-Hyun, K., Young-Joo, K., Jeong-Gil, C., and Geug-Tae, K., "XPS Study of Aluminum Oxides Deposited on PET Thin Film", J. Indus. Eng. Chem., Vol. 16, No. 3, pp. 149~156, 2000.