DOI QR코드

DOI QR Code

열분해유/콜타르 혼합비가 피치계 활성탄의 수율 및 물성에 미치는 영향

Effect of PFO/Coal-tar Blending Ratio on Yield and Physical Properties of Pitch-based Activated Carbon

  • 유태웅 (한국화학연구원(KRICT) 수소C1가스연구센터) ;
  • 서상완 (한국화학연구원(KRICT) 수소C1가스연구센터) ;
  • 임지선 (한국화학연구원(KRICT) 수소C1가스연구센터) ;
  • 이수홍 (한국화학연구원(KRICT) 수소C1가스연구센터) ;
  • 송우진 (충남대학교 고분자공학과) ;
  • 강석창 (한국화학연구원(KRICT) 수소C1가스연구센터)
  • Tae Ung Yoo (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology) ;
  • Sang Wan Seo (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology) ;
  • Ji Sun Im (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology) ;
  • Soo Hong Lee (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology) ;
  • Woo Jin Song (Department of Polymer Science and Engineering, Chungnam National University) ;
  • Seok Chang Kang (Hydrogen & C1 Gas Research Center, Korea Research Institute of Chemical Technology)
  • 투고 : 2024.02.15
  • 심사 : 2024.03.07
  • 발행 : 2024.04.10

초록

피치계 활성탄의 수율 향상을 위해 열분해유와 콜타르를 혼합하여 피치를 합성하고, 합성된 피치를 물리적 활성화하여 활성탄을 제조하였다. 피치는 콜타르를 열분해유 대비 0~20%로 달리하여, 380~420 ℃에서 3 h 반응하여 합성하였다. 합성된 피치는 80~260 ℃ 사이의 연화점을 가졌고, 10~40% 범위의 수율을 나타냈다. 모든 합성온도에서 콜타르 혼합비율이 증가할수록 수율이 증가하고, 연화점이 감소함을 확인하였다. 합성된 피치 중 연화점이 230~260 ℃ 사이의 피치를 선정하여 물성을 고찰하였다. 열분해유만으로 제조된 피치에 비해 콜타르가 함유된 피치가 저비점에서 휘발분이 많고, 잔탄량이 높았다. 이는 콜타르와 열분해유의 조성에 따른 차이로, 방향족 성분이 많은 콜타르와 지방족 성분이 많은 열분해유의 영향임을 확인하였다. 선정된 피치를 관형 반응기에서 950 ℃까지 승온하고, 1 h 동안 수증기로 물리적 활성화하였다. 콜타르가 포함된 활성탄이 열분해유만으로 제조된 활성탄에 비해 높은 수율과 미세기공율을 나타냈다. 본 연구에서는 피치 원료 혼합에 의한 활성탄 수율 증가 효과를 확인하고, 콜타르 혼합 비율에 따른 물리적 활성화 특성을 고찰하였다.

In order to produce high-yield pitch-based activated carbon, pitch was synthesized by blending pyrolysis fuel oil (PFO) and coal-tar. Pitch was synthesized by varying the amount of coal-tar from 0~20% compared to PFO and reacting at 380~420 ℃ for 3 h. The synthesized pitch had a softening point between 80 and 260 ℃, and yields ranged from 10 to 40%. At all synthesis temperatures, as the coal-tar blending ratio increased, the yield increased and the softening point decreased. After considering the selected pitches (softening points: 230~260 ℃), pitches containing coal-tar were more volatile at a low boiling point and had a higher residual carbon content. This is a difference in the composition of coal-tar and PFO, and it was con- firmed that coal-tar has a lot of aromatics and PFO has a lot of aliphatics. The selected pitch was heated to 950 ℃ in a tubular reactor and physically activated with steam for 1 hour. Activated carbon containing coal-tar showed higher yield and microporosity compared to only PFO. In this study, the effect of increasing activated carbon yield by blending pitch raw materials was confirmed, and the physical activation characteristics according to the coal-tar mixing ratio were examined.

키워드

과제정보

본 연구는 산업통상자원부의 탄소산업기반조성사업(산업용 특수 활성탄소소재 부품 자립화 기술 개발: 20016795) 및 소재부품기술개발(전략 핵심소재 자립화 기술 개발 사업: 20012870)의 지원을 받아 수행하였으며 이에 감사드립니다.

참고문헌

  1. K. Januszewicz, P. Kazimierski, M. Klein, D. Kardas, and J. Luczak, Activated carbon produced by pyrolysis of waste wood and straw for potential wastewater adsorption, Materials, 13, 2047 (2020). 
  2. M. Shoaib and H. M. Al-Swaidan, Optimization and characterization of sliced activated carbon prepared from date palm tree fronds by physical activation, Biomass Bioenergy, 73, 124-134 (2015). 
  3. A. Ahmadpour and D. D. Do, The preparation of active carbons from coal by chemical and physical activation, Carbon, 34, 471-479 (1996). 
  4. T. Kawano, M. Kubota, M. S. Onyango, F. Watanabe, and H. Matsuda, Preparation of activated carbon from petroleum coke by KOH chemical activation for adsorption heat pump, Appl. Therm. Eng., 28, 865-871 (2008). 
  5. N. Z. Mohd Azmi, A. Buthiyappan, A A. Abdul Raman, M. F. Abdul Patah, and S. Sufian, Recent advances in biomass based activated carbon for carbon dioxide capture-A review, J. Ind. Eng. Chem., 116, 1-20 (2022). 
  6. T. Tay, S. Ucar, and S. Karagoz, Preparation and characterization of activated carbon from waste biomass, J. Hazard. Mater., 165, 481-485 (2009). 
  7. J. M. de Andres, L. Orjales, A. Narros, M. del M. de la Fuente, and M. E. Rodriguez, Carbon dioxide adsorption in chemically activated carbon from sewage sludge, J. Air Waste Manag. Assoc., 63, 557-564 (2013). 
  8. M. Karimi, L. F. A. S. Zafanelli, J. P. P. Almeida, G. R. Stroher, A. E. Rodrigues, and J. A. C. Silva, Novel insights into activated carbon derived from municipal solid waste for CO2 uptake: Synthesis, adsorption isotherms and scale-up, J. Environ. Chem. Eng., 8, 104069 (2020). 
  9. F. Yang, J. Wang, L. Liu, P. Zhang, W. Yu, Q. Deng, Z. Zeng, and S. Deng, Synthesis of porous carbons with high N-content from shrimp shells for efficient CO2-capture and gas separation, ACS Sustain. Chem. Eng., 6, 15550-15559 (2018). 
  10. M. G. Plaza, A. S. Gonzalez, C. Pevida, J. J. Pis, and F. Rubiera, Valorisation of spent coffee grounds as CO2 adsorbents for post-combustion capture applications, Appl. Energy, 99, 272-279 (2012). 
  11. W. Hao, E. Bjorkman, M. Lilliestrale, and N. Hedin, Activated carbons prepared from hydrothermally carbonized waste biomass used as adsorbents for CO2, Appl. Energy, 112, 526-532 (2013). 
  12. W. Qiao, L. Ling, Q. Zha, and L. Liu, Preparation of a pitch-based activated carbon with a high specific surface area, J. Mater. Sci., 32, 4447-4453 (1997). 
  13. J. G. Kim, J. H. Kim, B.-J. Song, C. W. Lee, and J. S. Im, Synthesis and its characterization of pitch from pyrolyzed fuel oil (PFO), J. Ind. Eng. Chem., 36, 293-297 (2016). 
  14. J. H. Kim, J. G. Kim, K. B. Lee, and J. S. Im, Effects of pressure-controlled reaction and blending of PFO and FCC-DO for mesophase pitch, Carbon Lett., 29, 203-212 (2019). 
  15. J. R. Kershaw and K. J. T. Black, Structural characterization of coal-tar and petroleum pitches, Energy Fuels, 7, 420-425 (1993). 
  16. J. Alcaniz-Monge, D. Cazorla-Amoros, and A. Linares-Solano Characterisation of coal tar pitches by thermal analysis, infrared spectroscopy and solvent fractionation, Fuel, 80, 41-48 (2001). 
  17. X. Xu, P. Wu, C. Zhou, Q. Dou, and Y. Lv, Modification of coal tar-based porous carbon and analysis of its structure and electrochemical characteristics, Carbon Lett., 34, 163-175 (2024). 
  18. J. Guo, X. Li, H. Xu, H. Zhu, and B. Li, A Westwood, Molecular structure control in mesophase pitch via co-carbonization of coal tar pitch and petroleum pitch for production of carbon fibers with both high mechanical properties and thermal conductivity, Energy Fuels, 34, 6474-6482 (2020). 
  19. B. C. Bai, J. G. Kim, J. H. Kim, C. W. Lee, Y. S. Lee, and J. S. Im., Blending effect of pyrolyzed fuel oil and coal tar in pitch production for artificial graphite, Carbon Lett., 25, 78-83 (2018). 
  20. W. Geng, T. Nakajima, H. Takanashi, and A. Ohki, Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry, Fuel, 88, 139-144 (2009). 
  21. J. H. Kim and H. G. Kim, Characterization of pitch derived from petroleum residue and coal-tar, Transactions of the Korean Hydrogen and New Energy Society, 27, 612-619 (2016). 
  22. M. D. Guillen, C. Díaz, and C. G. Blanco, Characterization of coal tar pitches with different softening points by 1H NMR: Role of the different kinds of protons in the thermal process, Fuel Process. Technol., 58, 1-15 (1998). 
  23. E. Daguerre, A. Guillot, and F. Stoeckli, Activated carbons prepared from thermally and chemically treated petroleum and coal tar pitches, Carbon, 39, 1279-1285 (2001). 
  24. W. F. Edwards, L. Jin, and M. C. Thies, MALDI-TOF mass spectrometry: Obtaining reliable mass spectra for insoluble carbonaceous pitches, Carbon, 41, 2761-2768 (2003). 
  25. J. G. Kim, J. H. Kim, B. J. Song, Y. P. Jeon, C. W. Lee, Y. S. Lee, and J. S. Im, Characterization of pitch derived from pyrolyzed fuel oil using TLC-FID and MALDI-TOF, Fuel, 167, 25-30 (2016). 
  26. J. Macia-Agullo, B. Moore, D. Cazorla-Amoros, and A. Linares-Solano, Activation of coal tar pitch carbon fibres: Physical activation vs. chemical activation, Carbon, 42, 1367-1370 (2004).