DOI QR코드

DOI QR Code

Optimization of Ascorbic Acid Encapsulation in PLA Microcapsules Using Double Emulsion Process

이중유화법을 이용한 PLA 마이크로캡슐 내부로의 아스코르브산 캡슐화 공정 최적화

  • Ji Won Yun (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education) ;
  • Young Mi Chung (School of Energy, Materials & Chemical Engineering, Korea University of Technology and Education)
  • 윤지원 (한국기술교육대학교 에너지신소재화학공학부) ;
  • 정영미 (한국기술교육대학교 에너지신소재화학공학부)
  • Received : 2024.01.29
  • Accepted : 2024.03.11
  • Published : 2024.04.10

Abstract

This study analyzed the influence of process variables affecting the thermodynamic equilibrium and fluid dynamics of interfaces such as reverse micelle, salt concentration, interfacial tension, and viscosity of fluids to optimize the microencapsulation process using the W1/O/W2 double emulsion method. The process variable with the greatest impact on encapsulation efficiency was found to be the difference in osmotic pressure between the W1 and W2 phases. It was observed that increasing the salt concentration in the W2 phase or decreasing the ascorbic acid concentration in the W1 phase resulted in higher encapsulation efficiency. Additionally, a larger difference in osmotic pressure led to increased damage to the surface of the microparticles, as confirmed by SEM images. The introduction of reverse micelles, which was anticipated to increase encapsulation efficiency, either had a low contribution or even decreased encapsulation efficiency. The yield of microcapsules was expressed as a universal function, applicable to all process conditions or solution compositions. According to this universal function, no further increase in yield was observed beyond the Ca (capillary number) of approximately 20.

본 연구는 W1/O/W2 이중유화법을 통한 마이크로 캡슐화 공정을 최적화하기 위해 역미셀(reverse micelle), salt 농도 등의 열역학적 변수와 유체의 점도, 계면장력 등 계면의 유동에 영향을 미치는 공정변수들의 영향성을 분석하였다. 아스코르브산의 PLA (polylactic acid) 미립자 내부로의 캡슐화 효율에 가장 큰 영향을 미치는 변수는 W1과 W2상의 삼투압의 차이로 W2상의 salt 농도를 높이거나, W1상의 아스코르브산 농도를 줄이면 캡슐화 효율이 높아짐을 관찰하였다. 또한, 삼투압의 차이가 클수록 미립자 표면의 손상이 심해짐을 확인할 수 있었다. 캡슐화 효율을 높일 것으로 예상되었던 역미셀 도입은 그 기여도가 낮거나 오히려 캡슐화 효율을 낮추었다. 마이크로캡슐의 수율은 공정 조건, 용액 조성 등과 상관없는 universal 함수로 표현하였는데, Ca > 20에서는 더 이상의 수율 증가가 관찰되지 않았다.

Keywords

Acknowledgement

이 논문은 2022년도 한국기술교육대학교 교수 교육연구진흥과제 및 공용장비센터 지원에 의하여 연구되었습니다.

References

  1. N. I. Kim, Role of vitamins and minerals on skin care and beauty, Food Sci. Ind., 38, 16-25 (2005). 
  2. R. M. S. Cruz, M. C. Vieira, and C. L. M. Silva, Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics, Innov. Food Sci. Emerg. Technol., 9, 483-488 (2008). 
  3. S. K. Lee and A. A. Kader, Preharvest and postharvest factors influencing vitamin C content of horticultural crops, Postharvest Biol. Technol., 20, 207-220 (2000). 
  4. A. C. Carita, B. Fonseca-Santos, J. D. Shultz, B. Michniak-Kohn, M. Chorilli, and G. R. Leonardi, Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability, Nanomedicine, 24, 102117 (2020). 
  5. J. A. Tudela, J. C. Espín, and M. I. Gil, Vitamin C retention in fresh-cut potatoes, Postharvest Biol. Technol., 26, 75-84 (2002). 
  6. G. Ma, Microencapsulation of protein drugs for drug delivery: Strategy, preparation, and applications, J. Control. Release, 193, 324-340 (2014).
  7. P. T. da Silva, L. L. M. Fries, C. R. de Menezes, A. T. Holkem, C. L. Schwan, E. F. Wigmann, J. de O. Bastos, and C. de B. da Silva, Microencapsulation: Concepts, mechanisms, methods and some applications in food technology, Cienc. Rural., 44, 1304-1311 (2014).
  8. G. S. Khang, J. S. Lee, J. M. Rhee, and H. B. Lee, Drug delivery systems using biodegradable polymers, Polym. Sci. Technol., 12, 4-19 (2001). 
  9. M.-H. Lee, K.-J. Kim, and T.-J. Eom, Preparation of emulsion from biodegradable polymer (I) - Preparation of PLA and PBS emulsions -, J. Korea TAPPI, 44, 28-35 (2012). 
  10. R. M. Rasal, A. V. Janorkar, and D. E. Hirt, Poly(lactic acid) modifications, Prog. Polym. Sci., 35, 338-356 (2010). 
  11. R. A. Jain, The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices, Biomaterials, 21, 2475-2490 (2000). 
  12. M. Kitajima and A. Kondo, Fermentation without multiplication of cells using microcapsules that contain zymase complex and muscle enzyme extract, Bull. Chem. Soc. Jpn., 44, 3201-3202 (1971). 
  13. T. Uchida, N. Nagareya, S. Sakakibara, Y. Konishi, A. Nakai, M. Nishikata, K. Matsuyama, and K Yoshida, Preparation and characterization of polylactic acid microspheres containing bovine insulin by a w/o/w emulsion solvent evaporation method, Chem. Pharm. Bull., 45, 1539-1543 (1997). 
  14. A. Popelka, A. Abdulkareem, A. A. Mahmoud, M. G. Nassr, M. K. A. A. Mohamoud, K. J. Mohamoud, M. K. Hussein, M. Lehocky, D. Vesela, P. Humpolicek, and P. Kasak, Antimicrobial modification of PLA scaffolds with ascorbic and fumaric acids via plasma treatment, Surf. Coat. Technol., 400, 126216 (2020). 
  15. A. Carr and S. Maggini, Vitamin C and immune function, Nutrients, 9, 1211 (2017). 
  16. A. Gegotek and E. Skrzydlewska, Antioxidative and anti-inflammatory activity of ascorbic acid, Antioxidants, 11, 1993, (2022). 
  17. N. Mangir, A. J. Bullock, S. Roman, N. Osman, C. Chapple, and S. MacNeil, Production of ascorbic acid releasing biomaterials for pelvic floor repair, Acta Biomater., 29, 188-197 (2016). 
  18. H. R. Jin, Tissue engineered human cartilage, Korean J Otorhinolaryngol-Head Neck Surg., 46, 355-363 (2003). 
  19. R. Fitzgerald, L. M. Bass, D. J. Goldberg, M. H. Graivier, and Z. P., Physiochemical characteristics of poly-L-lactic acid (PLLA), Aesthet. Surg. J., 38, S13-S17 (2018). 
  20. Q. Gao, L. Duan, X. Feng, and W. Xu, Superiority of poly(L-lactic acid) microspheres as dermal fillers, Chin. Chem. Lett., 32, 577-582 (2021). 
  21. Y. Zhang, H. Liang, Q. Luo, J. Chen, N. Zhao, W. Gao, Y. Pu, B. He, and J. Xie, In vivo inducing collagen regeneration of biodegradable polymer microspheres, Regen. Biomater., 8, 1-13 (2021). 
  22. B. K. Kim, A Study on the Microencapsulation of Nanospheres, MSc Dissertation, Hannam University, Daejeon, Korea (2004). 
  23. S. L. Duraikkannu, R. Castro-Munoz, and A. Figoli, A review on phase-inversion technique-based polymer microsphere fabrication, Colloids Interface Sci. Commun., 40, 100329 (2021). 
  24. R. Liu, G.-H. Ma, Y.-H. Wan, and Z.-G. Su, Influence of process parameters on the size distribution of PLA microcapsules prepared by combining membrane emulsification technique and double emulsion-solvent evaporation method, Colloids Surf. B: Biointerfaces, 45, 144-153 (2005). 
  25. J. H. Lee, J. W. Jang, J. W. So, J. H. Choi, J. H. Park, S. I. Ahn, Y. S. Son, B. H. Min, and G. S. Khang, Adhesion of human intervertebral disk cells on alginate/PLGA microspheres, Polym. Korea, 33, 7-12 (2009). 
  26. Y. Yang, Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method, Biomaterials, 22, 231-241 (2001). 
  27. T. Ohwaki, R. Machida, H. Ozawa, Y. Kawashima, T. Hino, H. Takeuchi, and T. Niwa, Improvement of the stabili28. ty of water-in-oil-in-water multiple emulsions by the addition of surfactants in the internal aqueous phase of the emulsions, Int. J. Pharm., 93, 61-74 (1993). 
  28. Z. Li, H. Liu, L. Zeng, H. Liu, S. Yang, and Y. Wang, Preparation of high internal water-phase double emulsions stabilized by a single anionic surfactant for fabricating interconnecting porous polymer microspheres, Langmuir, 30, 12154-12163 (2014).