DOI QR코드

DOI QR Code

A Review on Renal Toxicity Profile of Common Abusive Drugs

  • Singh, Varun Parkash (Department of Pharmaceutical Sciences and Drug Research, Punjabi University) ;
  • Singh, Nirmal (Department of Pharmaceutical Sciences and Drug Research, Punjabi University) ;
  • Jaggi, Amteshwar Singh (Department of Pharmaceutical Sciences and Drug Research, Punjabi University)
  • Received : 2013.05.09
  • Accepted : 2013.07.14
  • Published : 2013.08.30

Abstract

Drug abuse has become a major social problem of the modern world and majority of these abusive drugs or their metabolites are excreted through the kidneys and, thus, the renal complications of these drugs are very common. Morphine, heroin, cocaine, nicotine and alcohol are the most commonly abused drugs, and their use is associated with various types of renal toxicity. The renal complications include a wide range of glomerular, interstitial and vascular diseases leading to acute or chronic renal failure. The present review discusses the renal toxicity profile and possible mechanisms of commonly abused drugs including morphine, heroin, cocaine, nicotine, caffeine and alcohol.

Keywords

References

  1. Murthy P, Manjunatha N, Subodh BN, Chand PK, Benegal V. Substance use and addiction research in India. Indian J Psychiatry. 2010;52(Suppl 1):S189-199. https://doi.org/10.4103/0019-5545.69232
  2. Strang J. Substance abuse: the size of the problem. Medicine. 1995;23:41-45.
  3. Pantelias K, Grapsa E. Drug abuse and kidney. Hippokratia. 2011;15:4-8.
  4. Kapusta DR. Opioid mechanisms controlling renal function. Clin Exp Pharmacol Physiol. 1995;22:891-902. https://doi.org/10.1111/j.1440-1681.1995.tb02324.x
  5. Snook LA, Milligan G, Kieffer BL, Massotte D. Co-expression of mu and delta opioid receptors as receptor-G protein fusions enhances both mu and delta signalling via distinct mechanisms. J Neurochem. 2008;105:865-873. https://doi.org/10.1111/j.1471-4159.2008.05215.x
  6. Weber ML, Farooqui M, Nguyen J, Ansonoff M, Pintar JE, Hebbel RP, Gupta K. Morphine induces mesangial cell proliferation and glomerulopathy via kappa-opioid receptors. Am J Physiol Renal Physiol. 2008;294:F1388-1397. https://doi.org/10.1152/ajprenal.00389.2007
  7. Quirion R, Finkel MS, Mendelsohn FA, Zamir N. Localization of opiate binding sites in kidney and adrenal gland of the rat. Life Sci. 1983;33(Suppl 1):299-302. https://doi.org/10.1016/0024-3205(83)90502-7
  8. Dissanayake VU, Hughes J, Hunter JC. Opioid binding sites in the guinea pig and rat kidney: radioligand homogenate binding and autoradiography. Mol Pharmacol. 1991;40:93-100.
  9. Gupta K, Weber ML. Renal effects of opioid exposure: considerations for therapeutic use. J Opioid Manag. 2006;2:236-240.
  10. Trelewicz P, Grzeszczak W, Drabczyk R. Levels of beta-endorphin in serum of patients with chronic renal failure treated with hemodialysis during a test which stimulates hypoglycemia after insulin. Pol Arch Med Wewn. 1993;89:217-222.
  11. Singhal PC, Sharma P, Sanwal V, Prasad A, Kapasi A, Ranjan R, Franki N, Reddy K, Gibbons N. Morphine modulates proliferation of kidney fibroblasts. Kidney Int. 1998;53:350-357. https://doi.org/10.1046/j.1523-1755.1998.00758.x
  12. Arerangaiah R, Chalasani N, Udager AM, Weber ML, Manivel JC, Griffin RJ, Song CW, Gupta K. Opioids induce renal abnormalities in tumor-bearing mice. Nephron Exp Nephrol. 2007;105:e80-89. https://doi.org/10.1159/000098564
  13. Perneger TV, Klag MJ, Whelton PK. Recreational drug use: a neglected risk factor for end-stage renal disease. Am J Kidney Dis. 2001;38:49-56. https://doi.org/10.1053/ajkd.2001.25181
  14. Sumathi T, Niranjali Devaraj S. Effect of Bacopa monniera on liver and kidney toxicity in chronic use of opioids. Phytomedicine. 2009;16:897-903. https://doi.org/10.1016/j.phymed.2009.03.005
  15. Senturk M, Irfan Kufrevioglu O, Ciftci M. Effects of some analgesic anaesthetic drugs on human erythrocyte glutathione reductase: an in vitro study. J Enzyme Inhib Med Chem. 2009; 24:420-424. https://doi.org/10.1080/14756360802188149
  16. Sreepada Rao TK, Nicastri AD, Friedman EA. Renal consequences of narcotic abuse. Adv Nephrol Necker Hosp. 1977;7: 261-290.
  17. Kapasi AJ, Mattana J, Wagner J. Morphine amplifies cocaineinduced renal cortical expression of tissue inhibitors of metalloproteinase (TIMP)-2. J Am Soc Nephrol. 1997;6:528A.
  18. Nzerue CM, Hewan-Lowe K, Riley LJ Jr. Cocaine and the kidney: a synthesis of pathophysiologic and clinical perspectives. Am J Kidney Dis. 2000;35:783-795. https://doi.org/10.1016/S0272-6386(00)70246-0
  19. Ebihara I, Nakamura T, Shimada N, Koide H. Increased plasma metalloproteinase-9 concentrations precede development of microalbuminuria in non-insulin-dependent diabetes mellitus. Am J Kidney Dis. 1998;32:544-550. https://doi.org/10.1016/S0272-6386(98)70015-0
  20. Orth SR, Hallan SI. Smoking: a risk factor for progression of chronic kidney disease and for cardiovascular morbidity and mortality in renal patients-absence of evidence or evidence of absence? Clin J Am Soc Nephrol. 2008;3:226-236. https://doi.org/10.2215/CJN.03740907
  21. Arany I, Grifoni S, Clark JS, Csongradi E, Maric C, Juncos LA. Chronic nicotine exposure exacerbates acute renal ischemic injury. Am J Physiol Renal Physiol. 2011;301:F125-133. https://doi.org/10.1152/ajprenal.00041.2011
  22. Heyman SN, Goldfarb M, Rosenberger C, Shina A, Rosen S. Effect of nicotine on the renal microcirculation in anesthetized rats: a potential for medullary hypoxic injury? Am J Nephrol. 2005;25:226-232. https://doi.org/10.1159/000085893
  23. Toledo-Rodriguez M, Loyse N, Bourdon C, Arab S, Pausova Z. Effect of prenatal exposure to nicotine on kidney glomerular mass and AT1R expression in genetically diverse strains of rats. Toxicol Lett. 2012;213:228-234. https://doi.org/10.1016/j.toxlet.2012.06.009
  24. Kamijo Y, Soma K, Asari Y, Ohwada T. Severe rhabdomyolysis following massive ingestion of oolong tea: caffeine intoxication with coexisting hyponatremia. Vet Hum Toxicol. 1999;41:381-383.
  25. Epstein M. Alcohol's impact on kidney function. Alcohol Health Res World. 1997;21:84-92.
  26. Van Thiel DH, Gavaler JS, Little JM, Lester R. Alcohol: its effect on the kidney. Metabolism. 1977;26:857-866. https://doi.org/10.1016/0026-0495(77)90004-X
  27. Perneger TV, Whelton PK, Puddey IB, Klag MJ. Risk of end-stage renal disease associated with alcohol consumption. Am J Epidemiol. 1999;150:1275-1281. https://doi.org/10.1093/oxfordjournals.aje.a009958
  28. Gaskari SA, Mani AR, Ejtemaei-Mehr S, Namiranian K, Homayoun H, Ahmadi H, Dehpour AR. Do endogenous opioids contribute to the bradycardia of rats with obstructive cholestasis? Fundam Clin Pharmacol. 2002;16:273-279. https://doi.org/10.1046/j.1472-8206.2002.00089.x
  29. Namiranian K, Samini M, Mehr SE, Gaskari SA, Rastegar H, Homayoun H, Dehpour AR. Mesenteric vascular bed responsiveness in bile duct-ligated rats: roles of opioid and nitric oxide systems. Eur J Pharmacol. 2001;423:185-193. https://doi.org/10.1016/S0014-2999(01)01091-3
  30. Kucuk C, Sozuer E, Ikizceli I, Avsarogullari L, Keceli M, Akgun H, Muhtaroglu S. Role of oxygen free radical scavengers in acute renal failure complicating obstructive jaundice. Eur Surg Res. 2003;35:143-147.
  31. Payabvash S, Kiumehr S, Nezami BG, Zandieh A, Anvari P, Tavangar SM, Dehpour AR. Endogenous opioids modulate hepatocyte apoptosis in a rat model of chronic cholestasis: the role of oxidative stress. Liver Int. 2007;27:538-547. https://doi.org/10.1111/j.1478-3231.2007.01457.x
  32. Eslimi D, Oryan S, Nasehi M, Zarrindast MR. Effects of opioidergic systems upon anxiolytic-like behaviors induced in cholestatic rats. Eur J Pharmacol. 2011;670:180-185. https://doi.org/10.1016/j.ejphar.2011.08.024
  33. Moezi L, Dehpour AR. Cardiovascular abnormalities in obstructive cholestasis: the possible mechanisms. Liver Int. 2013; 33:7-15. https://doi.org/10.1111/j.1478-3231.2012.02803.x
  34. Dehpour AR, Akbarloo N, Ghafourifar P. Endogenous nitric oxide modulates naloxone-precipitated withdrawal signs in a mouse model with acute cholestasis. Behav Pharmacol. 1998; 9:77-80.
  35. Ghaffari K, Savadkuhi ST, Honar H, Riazi K, Shafaroodi H, Moezi L, Ebrahimkhani MR, Tahmasebi MS, Dehpour AR. Obstructive cholestasis alters intestinal transit in mice: role of opioid system. Life Sci. 2004;76:397-406. https://doi.org/10.1016/j.lfs.2004.09.002
  36. Swain MG, Rothman RB, Xu H, Vergalla J, Bergasa NV, Jones EA. Endogenous opioids accumulate in plasma in a rat model of acute cholestasis. Gastroenterology. 1992;103:630-635.
  37. Marzioni M, Svegliati Baroni G, Alpini G, Benedetti A. Endogenous opioid peptides and chronic liver disease: from bedside to bench. J Hepatol. 2007;46:583-586. https://doi.org/10.1016/j.jhep.2007.01.006
  38. Deroee AF, Nezami BG, Mehr SE, Hosseini R, Salmasi AH, Talab SS, Jahanzad I, Dehpour AR. Cholestasis induced nephrotoxicity: the role of endogenous opioids. Life Sci. 2010;86: 488-492. https://doi.org/10.1016/j.lfs.2010.02.005
  39. Bhat RS, Bhaskaran M, Mongia A, Hitosugi N, Singhal PC. Morphine-induced macrophage apoptosis: oxidative stress and strategies for modulation. J Leukoc Biol. 2004;75:1131-1138. https://doi.org/10.1189/jlb.1203639
  40. Zhang YT, Zheng QS, Pan J, Zheng RL. Oxidative damage of biomolecules in mouse liver induced by morphine and protected by antioxidants. Basic Clin Pharmacol Toxicol. 2004;95:53-58.
  41. Bomzon A, Holt S, Moore K. Bile acids, oxidative stress, and renal function in biliary obstruction. Semin Nephrol. 1997;17: 549-562.
  42. Ljubuncic P, Tanne Z, Bomzon A. Evidence of a systemic phenomenon for oxidative stress in cholestatic liver disease. Gut. 2000;47:710-716. https://doi.org/10.1136/gut.47.5.710
  43. Holt S, Marley R, Fernando B, Harry D, Anand R, Goodier D, Moore K. Acute cholestasis-induced renal failure: effects of antioxidants and ligands for the thromboxane A2 receptor. Kidney Int. 1999;55:271-277. https://doi.org/10.1046/j.1523-1755.1999.00252.x
  44. Greeneltch KM, Kelly-Welch AE, Shi Y, Keegan AD. Chronic morphine treatment promotes specific Th2 cytokine production by murine T cells in vitro via a Fas/Fas ligand-dependent mechanism. J Immunol. 2005;175:4999-5005.
  45. Payabvash S, Beheshtian A, Salmasi AH, Kiumehr S, Ghahremani MH, Tavangar SM, Sabzevari O, Dehpour AR. Chronic morphine treatment induces oxidant and apoptotic damage in the mice liver. Life Sci. 2006;79:972-980. https://doi.org/10.1016/j.lfs.2006.05.008
  46. Hatsukari I, Hitosugi N, Ohno R, Hashimoto K, Nakamura S, Satoh K, Nagasaka H, Matsumoto I, Sakagami H. Induction of apoptosis by morphine in human tumor cell lines in vitro. Anticancer Res. 2007;27:857-864.
  47. Dunea G, Arruda JA, Bakir AA, Share DS, Smith EC. Role of cocaine in end-stage renal disease in some hypertensive African Americans. Am J Nephrol. 1995;15:5-9. https://doi.org/10.1159/000168794
  48. Baldwin DS, Gallo GR, Neugarten J. Drug abuse with narcotics and other agents. In: Schrier RW, Gottschalk CW, eds. Dis Kidney. 5th ed. Boston, MA: Little Brown; 1993.
  49. Hory B, Bresson C, Lorge JF, Perol C. Associated focal and segmental glomerulosclerosis in the acquired immunodeficiency syndrome. Am J Kidney Dis. 1988;12:169.
  50. Bourgoignie JJ. Renal complications of human immunodeficiency virus type 1. Kidney Int. 1990;37:1571-1584. https://doi.org/10.1038/ki.1990.151
  51. Sjogren P, Dragsted L, Christensen CB. Myoclonic spasms during treatment with high doses of intravenous morphine in renal failure. Acta Anaesthesiol Scand. 1993;37:780-782. https://doi.org/10.1111/j.1399-6576.1993.tb03809.x
  52. Dean M. Opioids in renal failure and dialysis patients. J Pain Symptom Manage. 2004;28:497-504. https://doi.org/10.1016/j.jpainsymman.2004.02.021
  53. Shen CH, Hung CJ, Wu CC, Huang HW, Ho WM. Rhabdomyolysis- induced acute renal failure after morphine overdose- a case report. Acta Anaesthesiol Sin. 1999;37:159-162.
  54. Khassawneh M, Al-Balas H. Renal impairment and hydronephrosis in a premature infant following morphine infusion: case report. Pediatr Nephrol. 2008;23:1887-1888. https://doi.org/10.1007/s00467-008-0866-2
  55. Bengtsson BO, Wootton-Gorges SL, Poulain FR, Sherman MP. Urinary effects of morphine in preterm infants. Acta Paediatr. 2003;92:251-253.
  56. Singhal PC, Pamarthi M, Shah R, Chandra D, Gibbons N. Morphine stimulates superoxide formation by glomerular mesangial cells. Inflammation. 1994;18:293-299. https://doi.org/10.1007/BF01534270
  57. Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK. Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macrophages. Endocrinology. 1985;117:793-795. https://doi.org/10.1210/endo-117-2-793
  58. Singhal PC, Gibbons N, Abramovici M. Long term effects of morphine on mesangial cell proliferation and matrix synthesis. Kidney Int. 1992;41:1560-1570. https://doi.org/10.1038/ki.1992.226
  59. Patel J, Manjappa N, Bhat R, Mehrotra P, Bhaskaran M, Singhal PC. Role of oxidative stress and heme oxygenase activity in morphine-induced glomerular epithelial cell growth. Am J Physiol Renal Physiol. 2003;285:F861-869.
  60. Weber ML, Vang D, Velho PE, Gupta P, Crosson JT, Hebbel RP, Gupta K. Morphine promotes renal pathology in sickle mice. Int J Nephrol Renovasc Dis. 2012;5:109-118.
  61. Gerada C, Ashworth M. ABC of mental health. Addiction and dependence-I: Illicit drugs. BMJ. 1997;315:297-300. https://doi.org/10.1136/bmj.315.7103.297
  62. Jaffe JA, Kimmel PL. Chronic nephropathies of cocaine and heroin abuse: a critical review. Clin J Am Soc Nephrol. 2006;1:655-667. https://doi.org/10.2215/CJN.00300106
  63. Ramos A, Vinhas J, Carvalho MF. Mixed cryoglobulinemia in a heroin addict. Am J Kidney Dis. 1994;23:731-734.
  64. Grishman E, Churg J, Porush JG. Glomerular morphology in nephrotic heroin addicts. Lab Invest. 1976;35:415-424.
  65. Kumar R, West DM, Jingree M, Laurence AS. Unusual consequences of heroin overdose: rhabdomyolysis, acute renal failure, paraplegia and hypercalcaemia. Br J Anaesth. 1999;83: 496-498. https://doi.org/10.1093/bja/83.3.496
  66. Rice EK, Isbel NM, Becker GJ, Atkins RC, McMahon LP. Heroin overdose and myoglobinuric acute renal failure. Clin Nephrol. 2000;54:449-454.
  67. Abdullah MS, Al-Waili NS, Butler G, Baban NK. Hyperbaric oxygen as an adjunctive therapy for bilateral compartment syndrome, rhabdomyolysis and acute renal failure after heroin intake. Arch Med Res. 2006;37:559-562. https://doi.org/10.1016/j.arcmed.2005.07.013
  68. Gupta A, Khaira A, Lata S, Agarwal SK, Tiwari SC. Rhabdomyolysis, acute kidney injury and transverse myelitis due to naive heroin exposure. Saudi J Kidney Dis Transpl. 2011;22: 1223-1225.
  69. Manner I, Sagedal S, Roger M, Os I. Renal amyloidosis in intravenous heroin addicts with nephrotic syndrome and renal failure. Clin Nephrol. 2009;72:224-228. https://doi.org/10.5414/CNP72224
  70. Benowitz NL. Clinical pharmacology and toxicology of cocaine. Pharmacol Toxicol. 1993;72:3-12.
  71. Gottbrath-Flaherty EK, Agrawal R, Thaker V, Patel D, Ghai K. Urinary tract infections in cocaine-exposed infants. J Perinatol. 1995;15:203-207.
  72. Edmondson DA, Towne JB, Foley DW, Abu-Hajir M, Kochar MS. Cocaine-induced renal artery dissection and thrombosis leading to renal infarction. WMJ. 2004;103:66-69.
  73. Bemanian S, Motallebi M, Nosrati SM. Cocaine-induced renal infarction: report of a case and review of the literature. BMC Nephrol. 2005;6:10. https://doi.org/10.1186/1471-2369-6-10
  74. Fabbian F, Pala M, De Giorgi A, Tiseo R, Molino C, Mallozzi Menegatti A, Travasoni F, Misurati E, Portaluppi F, Manfredini R. Left kidney: an unusual site of cocaine-related renal infarction. a case report. Eur Rev Med Pharmacol Sci. 2012;16 (Suppl 1):30-33.
  75. Herzlich BC, Arsura EL, Pagala M, Grob D. Rhabdomyolysis related to cocaine abuse. Ann Intern Med. 1988;109:335-336. https://doi.org/10.7326/0003-4819-109-4-335
  76. Pogue VA, Nurse HM. Cocaine-associated acute myoglobinuric renal failure. Am J Med. 1989;86:183-186. https://doi.org/10.1016/0002-9343(89)90266-0
  77. Chasnoff IJ, Burns WJ, Schnoll SH, Burns KA. Cocaine use in pregnancy. N Engl J Med. 1985;313:666-669. https://doi.org/10.1056/NEJM198509123131105
  78. Thakur V, Godley C, Weed S, Cook ME, Hoffman E. Case reports: cocaine-associated accelerated hypertension and renal failure. Am J Med Sci. 1996;312:295-298. https://doi.org/10.1097/00000441-199612000-00008
  79. Alvarez D, Nzerue CM, Daniel JF, Faruque S, Hewan-Lowe K. Acute interstitial nephritis induced by crack cocaine binge. Nephrol Dial Transplant. 1999;14:1260-1262. https://doi.org/10.1093/ndt/14.5.1260
  80. Peces R, Navascues RA, Baltar J, Seco M, Alvarez J. Antiglomerular basement membrane antibody-mediated glomerulonephritis after intranasal cocaine use. Nephron. 1999;81:434-438. https://doi.org/10.1159/000045328
  81. Garcia-Rostan y Perez GM, Garcia Bragado F, Puras Gil AM. Pulmonary hemorrhage and antiglomerular basement membrane antibody-mediated glomerulonephritis after exposure to smoked cocaine (crack): a case report and review of the literature. Pathol Int. 1997;47:692-697. https://doi.org/10.1111/j.1440-1827.1997.tb04443.x
  82. Goldstein RA, DesLauriers C, Burda A, Johnson-Arbor K. Cocaine: history, social implications, and toxicity: a review. Semin Diagn Pathol. 2009;26:10-17. https://doi.org/10.1053/j.semdp.2008.12.001
  83. Erzouki HK, Allen AC, Newman AH, Goldberg SR, Schindler CW. Effects of cocaine, cocaine metabolites and cocaine pyrolysis products on the hindbrain cardiac and respiratory centers of the rabbit. Life Sci. 1995;57:1861-1868. https://doi.org/10.1016/0024-3205(95)02166-G
  84. Pellinen P, Honkakoski P, Stenback F, Niemitz M, Alhava E, Pelkonen O, Lang MA, Pasanen M. Cocaine N-demethylation and the metabolism-related hepatotoxicity can be prevented by cytochrome P450 3A inhibitors. Eur J Pharmacol. 1994;270:35-43.
  85. Aoki K, Ohmori M, Takimoto M, Ota H, Yoshida T. Cocaine- induced liver injury in mice is mediated by nitric oxide and reactive oxygen species. Eur J Pharmacol. 1997;336: 43-49. https://doi.org/10.1016/S0014-2999(97)01230-2
  86. Ndikum-Moffor FM, Schoeb TR, Roberts SM. Liver toxicity from norcocaine nitroxide, an N-oxidative metabolite of cocaine. J Pharmacol Exp Ther. 1998;284:413-419.
  87. Valente MJ, Henrique R, Vilas-Boas V, Silva R, Bastos Mde L, Carvalho F, Guedes de Pinho P, Carvalho M. Cocaine-induced kidney toxicity: an in vitro study using primary cultured human proximal tubular epithelial cells. Arch Toxicol. 2012;86:249-261. https://doi.org/10.1007/s00204-011-0749-3
  88. McMillan JI, Riordan JW, Couser WG, Pollock AS, Lovett DH. Characterization of a glomerular epithelial cell metalloproteinase as matrix metalloproteinase-9 with enhanced expression in a model of membranous nephropathy. J Clin Invest. 1996;97:1094-1101. https://doi.org/10.1172/JCI118502
  89. Yee J. Plasma matrix metalloproteinase-9 and diabetic microalbuminuria: tip of the iceberg? Am J Kidney Dis. 1998;32: 669-671. https://doi.org/10.1016/S0272-6386(98)70035-6
  90. Trouve R, Latour C, Nahas G. Cocaine and the renin-angiotensin system. Adv Biosci. 1991;80:165-176.
  91. Mattana J, Gibbons N, Singhal PC. Cocaine interacts with macrophages to modulate mesangial cell proliferation. J Pharmacol Exp Ther. 1994;271:311-318.
  92. Kolodgie FD, Wilson PS, Cornhill JF, Herderick EE, Mergner WJ, Virmani R. Increased prevalence of aortic fatty streaks in cholesterol-fed rabbits administered intravenous cocaine: the role of vascular endothelium. Toxicol Pathol. 1993;21: 425-435. https://doi.org/10.1177/019262339302100501
  93. Om A, Warner M, Sabri N, Cecich L, Vetrovec G. Frequency of coronary artery disease and left ventricle dysfunction in cocaine users. Am J Cardiol. 1992;69:1549-1552. https://doi.org/10.1016/0002-9149(92)90701-Y
  94. Langner RO, Bement CL. Cocaine-induced changes in the biochemistry and morphology of rabbit aorta. NIDA Res Monogr. 1991;108:154-166.
  95. Eichhorn EJ, Demian SE, Alvarez LG, Willard JE, Molina S, Bartula LL, Prince MD, Inman LR, Grayburn PA, Myers SI. Cocaine-induced alterations in prostaglandin production in rabbit aorta. J Am Coll Cardiol. 1992;19:696-703. https://doi.org/10.1016/S0735-1097(10)80295-5
  96. Di Paolo N, Fineschi V, Di Paolo M, Wetly CV, Garosi G, Del Vecchio MT, Bianciardi G. Kidney vascular damage and cocaine. Clin Nephrol. 1997;47:298-303.
  97. Fogo A, Superdock KR, Atkinson JB. Severe arteriosclerosis in the kidney of a cocaine addict. Am J Kidney Dis. 1992; 20:513-515.
  98. van der Woude FJ, Waldherr R. Severe renal arterio-arteriolosclerosis after cocaine use. Nephrol Dial Transplant. 1999; 14:434-435. https://doi.org/10.1093/ndt/14.2.434
  99. Salcedo JR, Kim DU. Renal angiopathy associated with intrauterine cocaine exposure. J Am Soc Nephrol. 1992;3:664A.
  100. Kohan DE. Endothelins in the normal and diseased kidney. Am J Kidney Dis. 1997;29:2-26. https://doi.org/10.1016/S0272-6386(97)90004-4
  101. Samuels P, Steinfeld JD, Braitman LE, Rhoa MF, Cines DB, McCrae KR. Plasma concentration of endothelin-1 in women with cocaine-associated pregnancy complications. Am J Obstet Gynecol. 1993;168:528-533. https://doi.org/10.1016/0002-9378(93)90486-3
  102. Hendricks-Munoz KD, Gerrets RP, Higgins RD, Munoz JL, Caines VV. Cocaine-stimulated endothelin-1 release is decreased by angiotensin-converting enzyme inhibitors in cultured endothelial cells. Cardiovasc Res. 1996;31:117-123. https://doi.org/10.1016/0008-6363(95)00168-9
  103. Karch SB. Serum catecholamines in cocaine-intoxicated patients with cardiac symptoms. Ann Emerg Med. 1986;16:461.
  104. Lange RA, Hillis LD. Cardiovascular complications of cocaine use. N Engl J Med. 2001;345:351-358. https://doi.org/10.1056/NEJM200108023450507
  105. Palamara AT, Di Francesco P, Ciriolo MR, Bue C, Lafavia E, Rotilio G, Garaci E. Cocaine increases Sendai virus replication in cultured epithelial cells: critical role of the intracellular redox status. Biochem Biophys Res Commun. 1996;228:579-585. https://doi.org/10.1006/bbrc.1996.1701
  106. Orth SR, Ritz E, Schrier RW. The renal risks of smoking. Kidney Int. 1997;51:1669-1677. https://doi.org/10.1038/ki.1997.232
  107. Orth SR. Smoking-a renal risk factor. Nephron. 2000;86:12-26. https://doi.org/10.1159/000045708
  108. Briganti EM, Branley P, Chadban SJ, Shaw JE, McNeil JJ, Welborn TA, Atkins RC. Smoking is associated with renal impairment and proteinuria in the normal population: the AusDiab kidney study. Australian diabetes, obesity and lifestyle study. Am J Kidney Dis. 2002;40:704-712. https://doi.org/10.1053/ajkd.2002.35677
  109. Jaimes EA, Tian RX, Raij L. Nicotine: the link between cigarette smoking and the progression of renal injury? Am J Physiol Heart Circ Physiol. 2007;292:H76-82.
  110. Hukkanen J, Jacob P 3rd, Benowitz NL. Metabolism and disposition kinetics of nicotine. Pharmacol Rev. 2005;57:79-115. https://doi.org/10.1124/pr.57.1.3
  111. Tamaoki L, Oshiro-Monreal FM, Helou CM. Effects of nicotine exposure on renal function of normal and hypercholesterolemic rats. Am J Nephrol. 2009;30:377-382. https://doi.org/10.1159/000235622
  112. Jaimes EA, Tian RX, Joshi MS, Raij L. Nicotine augments glomerular injury in a rat model of acute nephritis. Am J Nephrol. 2009;29:319-326. https://doi.org/10.1159/000163593
  113. Hua P, Feng W, Ji S, Raij L, Jaimes EA. Nicotine worsens the severity of nephropathy in diabetic mice: implications for the progression of kidney disease in smokers. Am J Physiol Renal Physiol. 2010;299:F732-739. https://doi.org/10.1152/ajprenal.00293.2010
  114. Rezonzew G, Chumley P, Feng W, Hua P, Siegal GP, Jaimes EA. Nicotine exposure and the progression of chronic kidney disease: role of the $\alpha$7-nicotinic acetylcholine receptor. Am J Physiol Renal Physiol. 2012;303:F304-312. https://doi.org/10.1152/ajprenal.00661.2011
  115. Pausová Z, Paus T, Sedova L, Berube J. Prenatal exposure to nicotine modifies kidney weight and blood pressure in genetically susceptible rats: a case of gene-environment interaction. Kidney Int. 2003;64:829-835. https://doi.org/10.1046/j.1523-1755.2003.00172.x
  116. Taal HR, Geelhoed JJ, Steegers EA, Hofman A, Moll HA, Lequin M, van der Heijden AJ, Jaddoe VW. Maternal smoking during pregnancy and kidney volume in the offspring: the generation r study. Pediatr Nephrol. 2011;26:1275-1283. https://doi.org/10.1007/s00467-011-1848-3
  117. Keller G, Zimmer G, Mall G, Ritz E, Amann K. Nephron number in patients with primary hypertension. N Engl J Med. 2003;348:101-108. https://doi.org/10.1056/NEJMoa020549
  118. Husain K, Scott BR, Reddy SK, Somani SM. Chronic ethanol and nicotine interaction on rat tissue antioxidant defense system. Alcohol. 2001;25:89-97.
  119. Sener G, Sehirli O, Ipci Y, Cetinel S, Cikler E, Gedik N, Alican I. Protective effects of taurine against nicotine-induced oxidative damage of rat urinary bladder and kidney. Pharmacology. 2005;74:37-44. https://doi.org/10.1159/000083245
  120. Khanna AK, Xu J, Baquet C, Mehra MR. Adverse effects of nicotine and immunosuppression on proximal tubular epithelial cell viability, tissue repair and oxidative stress gene expression. J Heart Lung Transplant. 2009;28:612-620. https://doi.org/10.1016/j.healun.2009.03.003
  121. Harrison-Bernard LM, Cook AK, Oliverio MI, Coffman TM. Renal segmental microvascular responses to ANG II in AT1A receptor null mice. Am J Physiol Renal Physiol. 2003;284: F538-545.
  122. Bogdarina I, Welham S, King PJ, Burns SP, Clark AJ. Epigenetic modification of the renin-angiotensin system in the fetal programming of hypertension. Circ Res. 2007;100:520-526. https://doi.org/10.1161/01.RES.0000258855.60637.58
  123. Satta R, Maloku E, Zhubi A, Pibiri F, Hajos M, Costa E, Guidotti A. Nicotine decreases DNA methyltransferase 1 expression and glutamic acid decarboxylase 67 promoter methylation in GABAergic interneurons. Proc Natl Acad Sci USA. 2008;105:16356-16361. https://doi.org/10.1073/pnas.0808699105
  124. Arany I, Reed DK, Grifoni SC, Chandrashekar K, Booz GW, Juncos LA. A novel U-STAT3-dependent mechanism mediates the deleterious effects of chronic nicotine exposure on renal injury. Am J Physiol Renal Physiol. 2012;302:F722-729. https://doi.org/10.1152/ajprenal.00338.2011
  125. Cano-Marquina A, Tarín JJ, Cano A. The impact of coffee on health. Maturitas. 2013;75:7-21. https://doi.org/10.1016/j.maturitas.2013.02.002
  126. Passmore AP, Kondowe GB, Johnston GD. Renal and cardiovascular effects of caffeine: a dose-response study. Clin Sci (Lond). 1987;72:749-756.
  127. Arnaud MJ. The pharmacology of caffeine. Prog Drug Res. 1987;31:273-313.
  128. Knox FG, Granger JP. Control of sodium excretion: an integrative approach. Handbook of Physiology, Renal Physiology. 1992;927-967.
  129. Wilcox CS, Welch WJ, Schreiner GF, Belardinelli L. Natriuretic and diuretic actions of a highly selective adenosine A1 receptor antagonist. J Am Soc Nephrol. 1999;10:714-720.
  130. Knight RJ, Bowmer CJ, Yates MS. The diuretic action of 8-cyclopentyl-1,3-dipropylxanthine, a selective A1 adenosine receptor antagonist. Br J Pharmacol. 1993;109:271-277. https://doi.org/10.1111/j.1476-5381.1993.tb13564.x
  131. Lee J, Ha JH, Kim S, Oh Y, Kim SW. Caffeine decreases the expression of Na$^{+}$/K$^{+}$-ATPase and the type 3 Na+/H+ exchanger in rat kidney. Clin Exp Pharmacol Physiol. 2002;29: 559-563. https://doi.org/10.1046/j.1440-1681.2002.03697.x
  132. Roczniak A, Burns KD. Nitric oxide stimulates guanylate cyclase and regulates sodium transport in rabbit proximal tubule. Am J Physiol. 1996;270:F106-115.
  133. Stoos BA, Garvin JL. Actions of nitric oxide on renal epithelial transport. Clin Exp Pharmacol Physiol. 1997;24:591-594. https://doi.org/10.1111/j.1440-1681.1997.tb02097.x
  134. Tofovic SP, Jackson EK. Effects of long-term caffeine consumption on renal function in spontaneously hypertensive heart failure prone rats. J Cardiovasc Pharmacol. 1999;33: 360-366. https://doi.org/10.1097/00005344-199903000-00003
  135. Tofovic SP, Salah EM, Jackson EK, Melhem M. Early renal injury induced by caffeine consumption in obese, diabetic ZSF1 rats. Ren Fail. 2007;29:891-902. https://doi.org/10.1080/08860220701569846
  136. Yamaguchi T, Pelling JC, Ramaswamy NT, Eppler JW, Wallace DP, Nagao S, Rome LA, Sullivan LP, Grantham JJ. cAMP stimulates the in vitro proliferation of renal cyst epithelial cells by activating the extracellular signal-regulated kinase pathway. Kidney Int. 2000;57:1460-1471. https://doi.org/10.1046/j.1523-1755.2000.00991.x
  137. Dousa TP. Cyclic-3',5'-nucleotide phosphodiesterases in the cyclic adenosine monophosphate (cAMP)-mediated actions of vasopressin. Semin Nephrol. 1994;14:333-340.
  138. Grantham JJ. Renal cell proliferation and the two faces of cyclic adenosine monophosphate. J Lab Clin Med. 1997;130: 459-460. https://doi.org/10.1016/S0022-2143(97)90121-9
  139. Tanner GA, Tanner JA. Chronic caffeine consumption exacerbates hypertension in rats with polycystic kidney disease. Am J Kidney Dis. 2001;38:1089-1095. https://doi.org/10.1053/ajkd.2001.28614
  140. Calvet JP, Grantham JJ. The genetics and physiology of polycystic kidney disease. Semin Nephrol. 2001;21:107-123. https://doi.org/10.1053/snep.2001.20929
  141. Sullivan LP, Wallace DP, Grantham JJ. Epithelial transport in polycystic kidney disease. Physiol Rev. 1998;78:1165-1191.
  142. Belibi FA, Wallace DP, Yamaguchi T, Christensen M, Reif G, Grantham JJ. The effect of caffeine on renal epithelial cells from patients with autosomal dominant polycystic kidney disease. J Am Soc Nephrol. 2002;13:2723-2729. https://doi.org/10.1097/01.ASN.0000025282.48298.7B
  143. Zhou BB, Chaturvedi P, Spring K, Scott SP, Johanson RA, Mishra R, Mattern MR, Winkler JD, Khanna KK. Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity. J Biol Chem. 2000;275:10342-10348. https://doi.org/10.1074/jbc.275.14.10342
  144. Zhou BB, Elledge SJ. The DNA damage response: putting checkpoints in perspective. Nature. 2000;408:433-439. https://doi.org/10.1038/35044005
  145. Murnane JP. Cell cycle regulation in response to DNA damage in mammalian cells: a historical perspective. Cancer Metastasis Rev. 1995;14:17-29. https://doi.org/10.1007/BF00690208
  146. Bae EH, Kim SW. Changes in endothelin receptor type B and neuronal nitric oxide synthase in puromycin aminonucleoside- induced nephrotic syndrome. Korean J Physiol Pharmacol. 2010;14:223-228. https://doi.org/10.4196/kjpp.2010.14.4.223
  147. Tofovic SP, Rominski BR, Bastacky S, Jackso EK, Kost CK Jr. Caffeine augments proteinuria in puromycin-aminonucleoside nephrotic rats. Ren Fail. 2000;22:159-179. https://doi.org/10.1081/JDI-100100861
  148. Cattell WR. Urinary tract infection and acute renal failure. In: Raine AEG, ed. Advanced Renal Medicine. Oxford, UK; Oxford University Press: 1992. 302-313. p.
  149. Edmondson HA, Reynolds TB, Jacobson HG. Renal papillary necrosis with special reference to chronic alcoholism. a report of 20 cases. Arch Intern Med. 1966;118:255-264. https://doi.org/10.1001/archinte.1966.00290150069013
  150. Pablo NC, Churg J, Needle MA, Ganesharajah M. Renal papillary necrosis: relapsing form associated with alcoholism. Am J Kidney Dis. 1986;7:88-94.
  151. Smith SM, Leaber R, Lefebre A, Leung MF, Baricos WH, Leung WC. Pathogenesis of IgA nephropathy in ethanol consumption: animal model and cell culture studies. Alcohol. 1993;10:477-480. https://doi.org/10.1016/0741-8329(93)90068-Y
  152. Morgan JM, Hartley MW. Etiologic factors in lead nephropathy. South Med J. 1976;69:1445-1449. https://doi.org/10.1097/00007611-197611000-00016
  153. Wen SF, Parthasarathy R, Iliopoulos O, Oberley TD. Acute renal failure following binge drinking and nonsteroidal antiinflammatory drugs. Am J Kidney Dis. 1992;20:281-285.
  154. Keller CK, Andrassy K, Waldherr R, Ritz E. Postinfectious glomerulonephritis-is there a link to alcoholism? Q J Med. 1994;87:97-102.
  155. Marmot MG, Elliott P, Shipley MJ, Dyer AR, Ueshima H, Beevers DG, Stamler R, Kesteloot H, Rose G, Stamler J. Alcohol and blood pressure: the INTERSALT study. BMJ. 1994;308:1263-1267. https://doi.org/10.1136/bmj.308.6939.1263
  156. Puddey IB, Beilin LJ, Vandongen R, Rouse IL, Rogers P. Evidence for a direct effect of alcohol consumption on blood pressure in normotensive men. a randomized controlled trial. Hypertension. 1985;7:707-713. https://doi.org/10.1161/01.HYP.7.5.707
  157. Nishimura T, Shimizu T, Mineo I, Kawachi M, Ono A, Nakajima H, Kuwajima M, Kono N, Matsuzawa Y. Influence of daily drinking habits on ethanol-induced hyperuricemia. Metabolism. 1994;43:745-748. https://doi.org/10.1016/0026-0495(94)90125-2
  158. Knip M, Ekman AC, Ekman M, Leppaluoto J, Vakkuri O. Ethanol induces a paradoxical simultaneous increase in circulating concentrations of insulin-like growth factor binding protein-1 and insulin. Metabolism. 1995;44:1356-1359. https://doi.org/10.1016/0026-0495(95)90042-X
  159. Holbrook TL, Barrett-Connor E, Wingard DL. A prospective population-based study of alcohol use and non-insulin-dependent diabetes mellitus. Am J Epidemiol. 1990;132:902-909.
  160. Gueye AS, Chelamcharla M, Baird BC, Nguyen C, Tang H, Barenbaum AL, Koford JK, Shihab F, Goldfarb-Rumyantzev AS. The association between recipient alcohol dependency and long-term graft and recipient survival. Nephrol Dial Transplant. 2007;22:891-898. https://doi.org/10.1093/ndt/gfl689
  161. Sheron N. Alcoholic liver damage-toxicity, autoimmunity and allergy. Clin Exp Allergy. 1994;24:503-507. https://doi.org/10.1111/j.1365-2222.1994.tb00945.x
  162. McClain CJ, Barve S, Deaciuc I, Kugelmas M, Hill D. Cytokines in alcoholic liver disease. Semin Liver Dis. 1999; 19:205-219. https://doi.org/10.1055/s-2007-1007110
  163. Moss M, Guidot DM, Wong-Lambertina M, Ten Hoor T, Perez RL, Brown LA. The effects of chronic alcohol abuse on pulmonary glutathione homeostasis. Am J Respir Crit Care Med. 2000;161:414-419. https://doi.org/10.1164/ajrccm.161.2.9905002
  164. Jain S, Furness PN, Nicholson ML. The role of transforming growth factor beta in chronic renal allograft nephropathy. Transplantation. 2000;69:1759-1766. https://doi.org/10.1097/00007890-200005150-00001
  165. Bechara RI, Brown LA, Roman J, Joshi PC, Guidot DM. Transforming growth factor beta1 expression and activation is increased in the alcoholic rat lung. Am J Respir Crit Care Med. 2004;170:188-194. https://doi.org/10.1164/rccm.200304-478OC
  166. Nakano S, Mugikura M, Endoh M, Ogami Y, Otsuki M. Acute pancreatitis with diabetic ketoacidosis associated with hypermyoglobinemia, acute renal failure, and DIC. J Gastroenterol. 1996;31:623-626. https://doi.org/10.1007/BF02355070
  167. Pezzilli R, Billi P, Cappelletti O, Barakat B, Miglio F. Rhabdomyolysis and acute pancreatitis. J Gastroenterol Hepatol. 1999;14:168-171.
  168. Vanholder R, Sever MS, Erek E, Lameire N. Rhabdomyolysis. J Am Soc Nephrol. 2000;11:1553-1561.
  169. De Marchi S, Cecchin E, Basile A, Bertotti A, Nardini R, Bartoli E. Renal tubular dysfunction in chronic alcohol abuseeffects of abstinence. N Engl J Med. 1993;329:1927-1934. https://doi.org/10.1056/NEJM199312233292605
  170. Parenti P, Giordana B, Hanozet GM. In vitro effect of ethanol on sodium and glucose transport in rabbit renal brush border membrane vesicles. Biochim Biophys Acta. 1991;1070:92-98. https://doi.org/10.1016/0005-2736(91)90150-7
  171. Rodrigo R, Vergara L, Oberhauser E. Effect of chronic ethanol consumption on postnatal development of renal (Na$^{+}$K)-ATPase in the rat. Cell Biochem Funct. 1991;9:215-222. https://doi.org/10.1002/cbf.290090310
  172. Rothman A, Proverbio T, Fernandez E, Proverbio F. Effect of ethanol on the Na($^{+}$)- and the Na$^{+}$, K($^{+}$)-ATPase activities of basolateral plasma membranes of kidney proximal tubular cells. Biochem Pharmacol. 1992;43:2034-2036. https://doi.org/10.1016/0006-2952(92)90648-3
  173. Schardijn GH, Statius van Eps LW. Beta 2-microglobulin: its significance in the evaluation of renal function. Kidney Int. 1987;32:635-641. https://doi.org/10.1038/ki.1987.255
  174. Jung K, Schulze BD, Sydow K. Diagnostic significance of different urinary enzymes in patients suffering from chronic renal diseases. Clin Chim Acta. 1987;168:287-295. https://doi.org/10.1016/0009-8981(87)90004-0
  175. Laitinen K, Lamberg-Allardt C, Tunninen R, Karonen SL, Tähtela R, Ylikahri R, Valimaki M. Transient hypoparathyroidism during acute alcohol intoxication. N Engl J Med. 1991;324:721-727. https://doi.org/10.1056/NEJM199103143241103
  176. Assadi FK. Renal tubular dysfunction in fetal alcohol syndrome. Pediatr Nephrol. 1990;4:48-51. https://doi.org/10.1007/BF00858439
  177. Assadi FK, Manaligod JR, Fleischmann LE, Zajac CS. Effects of prenatal ethanol exposure on postnatal renal function and structure in the rat. Alcohol. 1991;8:259-263. https://doi.org/10.1016/0741-8329(91)90321-M
  178. Halperin ML, Hammeke M, Josse RG, Jungas RL. Metabolic acidosis in the alcoholic: a pathophysiologic approach. Metabolism. 1983;32:308-315. https://doi.org/10.1016/0026-0495(83)90197-X
  179. Wrenn KD, Slovis CM, Minion GE, Rutkowski R. The syndrome of alcoholic ketoacidosis. Am J Med. 1991;91:119-128. https://doi.org/10.1016/0002-9343(91)90003-G
  180. Musabayane CT, Cooper RG, Rao PV, Balment RJ. Effects of ethanol on the changes in renal fluid and electrolyte handling and kidney morphology induced by long-term chloroquine administration to rats. Alcohol. 2000;22:129-138. https://doi.org/10.1016/S0741-8329(00)00110-5

Cited by

  1. Preparation and therapeutic evolution of Ficus benjamina solid lipid nanoparticles against alcohol abuse/antabuse induced hepatotoxicity and cardio-renal injury vol.7, pp.57, 2013, https://doi.org/10.1039/c7ra04866a
  2. Puérperas dependientes de crack: dificultades y facilidades afrontadas en el cuidado al recién nacido vol.18, pp.1, 2013, https://doi.org/10.5294/aqui.2018.18.1.4
  3. Traditional Chinese Medicine-Guided Dietary Intervention for Male Youth Undergoing Drug Detoxification: A Randomized Controlled Trial vol.2019, pp.None, 2013, https://doi.org/10.1155/2019/3870316
  4. Blood lead concentration among oral/inhaled opium users: systematic review and meta-analysis vol.51, pp.1, 2013, https://doi.org/10.1080/10408444.2020.1864722
  5. Use of in vitro metabolomics in NRK cells to help predicting nephrotoxicity and differentiating the MoA of nephrotoxicants vol.353, pp.None, 2013, https://doi.org/10.1016/j.toxlet.2021.09.011